In vitro Interaction of Titin and Myosin-Binding Protein C

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The morphological and structural features of coaggregates of two muscle proteins of the sarcomeric cytoskeleton (titin and myosin-binding protein C) were studied using atomic force microscopy, FTIR spectroscopy, fluorimetry using the dye thioflavin T and X-ray diffraction. It was found that, depending on the ionic strength of the solution, coaggregation of these proteins occurs with the formation of structures with different morphologies. The data obtained in vitro expand the understanding of the peculiarities of aggregation of sarcomeric muscle proteins and are important for a better understanding of their interaction in sarcomeres in vivo.

Авторлар туралы

T. Uryupina

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Russia

M. Timchenko

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Russia

L. Bobyleva

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Russia

N. Penkov

Institute of Cell Biophysics, Russian Academy of Sciences

Pushchino, Russia

A. Gabdulkhakov

Institute of Protein Research, Russian Academy of Sciences

Pushchino, Russia

P. Nekrasov

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Russia

S. Udalsov

Institute of Physicochemical and Biological Problems of Soil Science

Pushchino, Russia

I. Vikhlyantsev

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences; Pushchino Branch of the Russian Biotechnological University (BIOTECH University)

Pushchino, Russia; Pushchino, Russia

A. Bobylev

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences; Sirius University of Science and Technology

Email: bobylev1982@gmail.com
Pushchino, Russia; Sirius Federal Territory, Russia

Әдебиет тізімі

  1. Schreiber G., Haran G., and Zhou H. X. Fundamental aspects of protein-protein association kinetics. Chem. Rev., 109 (3), 839–860 (2009). doi: 10.1021/cr800373w
  2. Thabault L., Liberelle M., and Frédérick R. Targeting protein self-association in drug design. Drug Discov. Today, 26 (5), 1148–1163 (2021). doi: 10.1016/j.drudis.2021.01.028
  3. Luo X., Wang J., Ju Q., Li T., and Bi X. Molecular mechanisms and potential interventions during aging-associated sarcopenia. Mech. Ageing Dev., 223, 112020 (2025). doi: 10.1016/j.mad.2024.112020
  4. Fielding R. A. Sarcopenia: An emerging syndrome of advancing age. Calcif. Tissue Int., 114 (1), 1–2 (2024). doi: 10.1007/s00223-023-01175-z
  5. Granzier H. L. and Labeit S. Titin and its associated proteins: the third myofilament system of the sarcomere. Adv. Prot. Chem., 71, 89–119 (2005). doi: 10.1016/S0065-3233(04)71003-7
  6. LeWinter M. M. and Granzier H. L. Titin is a major human disease gene. Circulation, 127 (8), 938–944 (2013). doi: 10.1161/CIRCULATIONAHA.112.139717
  7. Chung C. S., Hutchinson K. R., Methawasin M., Saripalli C., Smith J. E. 3rd, Hidalgo C. G., Luo X., Labelt S., Guo C., and Granzier H. L. Shortening of the elastic tandem immunoglobulin segment of titin leads to diastolic dysfunction. Circulation, 128 (1), 19–28 (2013). doi: 10.1161/CIRCULATIONAHA.112.001268
  8. Tonino P., Kiss B., Gohlke J., Smith J. E. 3rd, and Granzier H. Fine mapping titin’s C-zone: Matching cardiac myosin-binding protein C stripes with titin’s super-repeats. J. Mol. Cell Cardiol., 133, 47–56 (2019). doi: 10.1016/j.ijmcc.2019.05.026
  9. Herman D. S., Lam L., Taylor M. R., Wang L., Teekakirikul P., Christodoulou D., Conner L., DePalma S. R., McDonough B., Sparks E., Teodoroscu D. L., Cirino A. L., Banner N. R., Pennell D. J., Graw S., Merlo M., Di Lenarda A., Sinagra G., Bos J. M., Ackerman M. J., Mitchell R. N., Murty C. E., Lakdawala N. K., Ho C. Y., Barton P. J., Cook S. A., Mestroni L., Seidman J. G., and Seidman C. E. Truncations of titin causing dilated cardiomyopathy. N. Engl. J. Med., 366 (7), 619–628 (2012). doi: 10.1056/NEJM0a1110186
  10. Begay R. L., Graw S., Sinagra G., Merlo M., Slavov D., Gowan K., Jones K. L., Barbati G., Spezzacatene A., Brun F., Di Lenarda A., Smith J. E., Granzier H. L., Mestroni L., and Taylor M. Familial cardiomyopathy registry. Role of titin missense variants in dilated cardiomyopathy. J. Am. Heart Assoc., 4 (11), e002645 (2015). doi: 10.1161/JAHA.115.002645
  11. Roberts A. M., Ware J. S., Herman D. S., Schafer S., Baksi J., Bick A. G., Buchan R. J., Walsh R., John S., Wilkinson S., Mazzarotto F., Felkin L. E., Gong S., MacArthur J. A., Cunningham T., Flaminski, Gabriel S. B., Altshuler D. M., Macdonald P. S., Heimig M., Keogh A. M., Hayward C. S., Banner N. R., Pennell D. J., O’Regan D. P., San T. R., de Marvao A., Dawes T. J., Gulati A., Birks E. J., Yacoub M. H., Radke M., Gotthardt M., Wilson J. G., O’Donnell C. J., Prasad S. K., Barton P. J., Fatkin D., Hubner N., Seidman J. G., Seidman C. E., and Cook S. A. Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and disease. Sci. Transl. Med., 7 (270), 270426 (2015). doi: 10.1126/scitranslmed.3010134
  12. Bobylev A. G., Galzitskaya O. V., Fadeev R. S., Bobyleva L. G., Yurshenas D. A., Molochkov N. V., Dovldchenko N. V., Selivanova O. M., Penkov N. V., Podlubnaya Z. A., and Vikhiyantsev I. M. Smooth muscle titin forms in vitro amyloid aggregates. Biosci. Rep., 36 (3), e00334 (2016). doi: 10.1042/B5R20160066
  13. Yakupova E. I., Vikhiyantsev I. M., Bobyleva L. G., Penkov N. V., Timchenko A. A., Timchenko M. A., Enin G. A., Khurzan S. S., Selivanova O. M., and Bobylev A. G. Different amyloid aggregation of smooth muscles titin in vitro. J. Biomol. Struct. Dyn., 36 (9), 2237–2248 (2018). doi: 10.1080/07391102.2017.1348988
  14. Bobyleva L. G., Shumeyko S. A., Yakupova E. I., Surin A. K., Galzitskaya O. V., Kihara H., Timchenko A. A., Timchenko M. A., Penkov N. V., Nikulin A. D., Suvorina M. Y., Molochkov N. V., Lobanov M. Y., Fadeev R. S., Vikhiyantsev I. M., and Bobylev A. G. Myosin binding protein-C forms amyloid-like aggregates in vitro. Int. J. Mol. Sci., 22, 731 (2021). doi: 10.3390/ijms22020731
  15. Bobylev A. G., Yakupova E. I., Bobyleva L. G., Molochkov N. V., Timchenko A. A., Timchenko M. A., Kihara H., Nikulin A. D., Gabdulkhakov A. G., Mehrik T. N., Penkov N. V., Lobanov M. Y., Kazakov A. S., Kellermayer M., Martonfahl Z., Galzitskaya O. V., and Vikhiyantsev I. M. Nonspecific amyloid aggregation of chicken smooth-muscle titin: In vitro investigations. Int. J. Mol. Sci., 24 (2), 1056 (2023). doi: 10.3390/ijms24021056
  16. Bobyleva L. G., Uryupina T. A., Penkov N. V., Timchenko M. A., Ulanova A. D., Gabdulkhakov A. G., Vikhiyantsev I. M., and Bobylev A. G. The structural features of skeletal muscle titin aggregates. Mol. Biol., 58 (2), 319–332 (2024). doi: 10.1134/s0026893324020043
  17. Salcan S., Bongardi S., Monteiro Barbosa D., Efimov I. R., Rassaf T., Kruger M., and Kotter S. Elastic titin properties and protein quality control in the aging heart. Biochim. Biophys. Acta Mol. Cell. Res., 1867 (3), 118532 (2020). doi: 10.1016/j.bbamer.2019.118532
  18. Hughes D. C., Wallace M. A., and Baar K. Effects of aging, exercise, and disease on force transfer in skeletal muscle. Am. J. Physiol. Endocrinol. Metab., 309 (1), E1–E10 (2015). doi: 10.1152/ajpendo.00095.2015
  19. Hessel A. L., Lindstedt S. L., and Nishikawa K. C. Physiological mechanisms of eccentric contraction and its applications: A role for the giant titin protein. Front. Physiol., 8, 70 (2017). doi: 10.3389/fphys.2017.00070
  20. Soteriou A., Gamage M., and Trinick J. A survey of interactions made by the giant protein titin. J. Cell. Sci., 104 (Pt 1), 119–123 (1993). doi: 10.1242/jcs.104.1.119
  21. Offer G., Moos C., and Starr R. A new protein of the thick filaments of vertebrate skeletal myofibrils. Extractions, purification and characterization. J. Mol. Biol., 74 (4), 653–676 (1973). doi: 10.1016/0022-2836(73)90055-7
  22. Trinick J., Knight P., and Whiting A. Purification and properties of native titin. J. Mol. Biol., 180 (2), 331–356 (1984). doi: 10.1016/s0022-2836(84)80007-8
  23. Starr R. and Offer G. Preparation of C-protein, H-protein, X-protein, and phosphofructokinase. Methods Enzymol., 85 (Pt 1), 130–138 (1982). doi: 10.1016/0076-6879(82)85016-7
  24. Venyaminov S. and Prendergast F. G. Water (HO and DO) molar absorptivity in the 1000–4000 cm range and quantitative infrared spectroscopy of aqueous solutions. Anal. Biochem., 248 (2), 234–245 (1997). doi: 10.1006/abio.1997.2136
  25. Yang H, Yang S, Kong J, Dong A, and Yu S. Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy. Nat. Protoc., 10 (3), 382–396 (2015). doi: 10.1038/nprot.2015.024
  26. Makin O. S. and Serpell L. C. Structures for amyloid fibrils. FEBS J, 272 (23), 5950–5961 (2005). doi: 10.1111/j.1742-4658.2005.05025.x
  27. Jahn T. R, Makin O. S, Morris K. L., Marshall K. E., Tian P, Sikorski P, and Serpell L. C. The common architecture of cross-beta amyloid. J. Mol. Biol., 395 (4), 717–727 (2010). doi: 10.1016/j.jmb.2009.09.039
  28. Zandomeneghi G, Krebs M. R, McCammon M. G., and Fandrich M. FTIR reveals structural differences between native beta-sheet proteins and amyloid fibrils. Prot. Sci., 13 (12), 3314–3321 (2004). doi: 10.1110/ps.041024904
  29. Yakupova E. I., Bobyleva L. G., Shumeyko S. A., Vikhlyantsev I. M., and Bobylev A. G. Amyloids: The history of toxicity and functionality. Biology (Basel), 10 (5), 394 (2021). doi: 10.3390/biology10050394

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025