Collective excitations in amorphous ice
- Авторлар: Khusnutdinoff R.M.1
-
Мекемелер:
- Казанский государственный энергетический университет
- Шығарылым: Том 87, № 2 (2025)
- Беттер: 142-148
- Бөлім: Articles
- ##submission.dateSubmitted##: 06.07.2025
- ##submission.dateAccepted##: 06.07.2025
- ##submission.datePublished##: 06.07.2025
- URL: https://ta-journal.ru/0023-2912/article/view/686804
- DOI: https://doi.org/10.31857/S0023291225020065
- EDN: https://elibrary.ru/tozuwl
- ID: 686804
Дәйексөз келтіру
Аннотация
The paper presents the results of a study of microscopic collective excitations in low-density amorphous ice obtained by molecular dynamics simulation based on the monatomic ML-mW model of the intermolecular interaction potential. The calculated spectra of longitudinal and transverse currents reveal the presence of propagating collective excitations of longitudinal and transverse polarizations in amorphous ice for a wide range of wavenumbers. The region of mixing of longitudinal and transverse collective modes in low-density amorphous ice is established. It is shown that the temperature dependence of the gap width kgap in the dispersion law of transverse acoustic-like modes is described by a linear dependence.
Негізгі сөздер
Толық мәтін

Авторлар туралы
R. Khusnutdinoff
Казанский государственный энергетический университет
Хат алмасуға жауапты Автор.
Email: khrm@mail.ru
Ресей, Казань
Әдебиет тізімі
- Montfrooij W. and de Schepper I. Excitations in simple liquids, liquid metals and superfluids. New York: Oxford University Press, 2010.
- Pines D. Elementary excitations in solids. New York - Amsterdam: W.A. Benjamin Inc, 1963.
- Boon J.P., Yip S. Molecular Hydrodynamics. New York: McGraw-Hill, 1980.
- Boinovich L.B., Emelyanenko A.M. Forces due to dynamic structure in thin liquid films // Adv. Colloid Interf. Sci. 2002. V. 96. P. 37–58. https://doi.org/10.1016/s0001-8686(01)00074-4
- Френкель Я.И. Кинетическая теория жидкостей. Ленинград: Наука, 1975.
- Barrat J.-L. and Hansen J.-P. Basic concepts for simple and complex liquids. Cambridge: University Press, 2003.
- Balucani U. and Zoppi M. Dynamics of the liquid state. Oxford: Clarendon Press, 1994.
- Brazhkin V.V., Trachenko K. Collective excitations and thermodynamics of disordered state: New insights into an old problem // J. Phys. Chem. B. 2014. V. 118. P. 11417–11427. https://doi.org/10.1021/jp503647s
- Trachenko K., Brazhkin V.V. Collective modes and thermodynamics of the liquid state // Rep. Prog. Phys. 2016. V. 79. P. 016502. https://doi.org/ 10.1088/0034-4885/79/1/016502
- Хуснутдинов Р.М., Мокшин А.В. Атомарные коллективные возбуждения в жидком свинце // Письма в ЖЭТФ. 2014. Т. 100. С. 42. https://doi.org/10.7868/S0370274X14130086
- March N.H. Liquid metals: Concepts and theory. Cambridge: Cambridge University Press, 1990.
- Levesque D., Verlet L., Kurkijarvi J. Computer “experiments” on classical fluids. iv. transport properties and time-correlation functions of the Lennard-Jones liquid near its triple point // Phys. Rev. A. 1973. V. 7. P. 1690. https://doi.org/10.1103/PhysRevA.7.1690
- Hosokawa S., Munejiri S., Inui M., Kajihara Y., Pilgrim W.-C., Ohmasa Y., Tsutsui S., Baron A.Q.R., Shimojo F., Hoshino K. Transverse excitations in liquid Sn // J. Phys. Condens. Matter. 2013. V. 25. P. 112101. https://doi.org/10.1088/0953-8984/25/11/112101
- Hosokawa S., Munejiri S., Inui M., Kajihara Y., Pilgrim W.-C., Baron A.Q.R., Shimojo F., Hoshino K. Transverse excitations in liquid metals // AIP Conf. Proc. 2013. V. 1518. P. 695–702. https://doi.org/10.1063/1.4794661
- Hosokawa S., Inui M., Kajihara Y., Tsutsui S., Baron A.Q.R. Transverse excitations in liquid Fe, Cu and Zn // J. Phys.: Condens. Matter. 2015. V. 27. P. 194104. https://doi.org/10.1088/0953-8984/27/19/194104
- Rahman A., Stillinger F.H. Propagation of sound in water. A molecular-dynamics study // Phys. Rev. A. 1974. V. 10. P. 368. https://doi.org/10.1103/PhysRevA.10.368
- Sette F., Ruocco G., Krisch M., Masciovecchio C., Verbeni R., Bergmann U. Collective dynamics in water by high energy resolution inelastic X-Ray scattering // Phys. Rev. Lett. 1995. V. 75. P. 850. https://doi.org/10.1103/PhysRevLett.75.850
- Ricci M.A., Rocca D., Ruocco G., Vallauri R. Collective dynamical properties of liquid water // Phys. Rev. Lett. 1988. V. 61. P. 1958. https://doi.org/10.1103/PhysRevLett.61.1958
- Sastry S., Sciortino F., Stanley H.E. Collective excitations in liquid water at low frequency and large wave vector // J. Chem. Phys. 1991. V. 95. P. 7775–7776. https://doi.org/10.1063/1.461354
- Bertolini D., Tani A. Generalized hydrodynamics and the acoustic modes of water: Theory and simulation results // Phys. Rev. E. 1995. V. 51. P. 1091. https://doi.org/10.1103/PhysRevE.51.1091
- Petrillo C., Sacchetti F., Dorner B., Suck J.-B. High-resolution neutron scattering measurement of the dynamic structure factor of heavy water // Phys. Rev. E. 2000. V. 62. P. 3611. https://doi.org/10.1103/PhysRevE.62.3611
- Sacchetti F., Suck J.-B., Petrillo C., Dorner B. Brillouin neutron scattering in heavy water: Evidence for two-mode collective dynamics // Phys. Rev. E. 2004. V. 69. P. 061203. https://doi.org/10.1103/PhysRevE.69.061203
- Chan H., Cherukara M.J., Narayanan B., Loeffler T.D., Benmore C., Gray S.K., Sankaranarayanan S. Machine learning coarse grained models for water // Nat. Commun. 2019. V. 10. P. 379. https://doi.org/10.1038/s41467-018-08222-6
- Molinero V., Moore E.B. Water Modeled As an Intermediate Element between Carbon and Silicon // J. Phys. Chem. B. 2009. V. 113. P. 4008–4016. https://doi.org/10.1021/jp805227c
- Yunusov M.B., Khusnutdinoff R.M. Neural network model for predicting the atomization energy of multi-atomic molecules based on sorted Coulomb matrices // High Energy Chemistry. 2024. V. 58. P. S286. https://doi.org/10.1134/S0018143924701017
- Mallamace F., Corsaro C., Stanley H.E. Possible relation of water structural relaxation to water anomalies // PNAS. 2013. V. 110. P. 4899. https://doi.org/10.1073/pnas.1221805110
- Хуснутдинов Р.М. Микроскопическая коллективная динамика воды // Коллоид. журн. 2016. Т. 78. № 2. С. 208. https://doi.org/10.7868/S0023291216010092
- Guthrie M., Tulk C.A., Benmore C.J., Klug D.D. A structural study of very high-density amorphous ice // Chem. Phys. Lett. 2004. V. 397. P. 335. https://doi.org/10.1016/j.cplett.2004.07.116
- Хуснутдинов Р.М. Динамика сетки водородных связей при электрокристаллизации воды // Коллоид. журн. 2013. Т. 75. № 6. С. 792. https://doi.org/10.7868/s0023291213060062
- Хуснутдинов Р.М. Структурные и динамические особенности воды и аморфного льда // Коллоид. журн. 2017. Т. 79. № 1. С. 104. https://doi.org/10.7868/S0023291217010074
- Mishima O. Polyamorphism in water // Proc. Jpn. Acad., Ser. B. 2010. V. 86. P. 165. https://doi.org/10.2183/pjab.86.165
Қосымша файлдар
