Temperature-depended wettability of conductive films based on electrophoretic silver nanoparticle concentrates

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The Doctor Blade method was employed to obtain homogeneous, rough films comprising concentrated organosols of silver nanoparticles stabilised with bis-(2-ethylhexyl)sodium sulphosuccinate. The films exhibited a precious metal content of up to 73 at. %. The study provides a comprehensive account of the alterations in the film wetting capacity in response to the thermal treatment conditions, spanning a range of temperatures from 50 to 500°C. The evolution of the film wettability is not a linear process due to the nanoparticle sintering and thermal decomposition of stabiliser molecules. Experimental evidence indicated that the transition from non-conductive to conductive coatings (from 500 to 105 mOhm/□) was accompanied by a notable increase in the contact angle (from 25 to 78°).

Texto integral

Acesso é fechado

Sobre autores

S. Babashova

Институт неорганической химии им. А.В. Николаева СО РАН

Email: kolodin@niic.nsc.ru
Rússia, Новосибирск

V. Bocharov

Институт неорганической химии им. А.В. Николаева СО РАН

Email: kolodin@niic.nsc.ru
Rússia, Новосибирск

V. Sulyaeva

Институт неорганической химии им. А.В. Николаева СО РАН

Email: kolodin@niic.nsc.ru
Rússia, Новосибирск

E. Maksimovskiy

Институт неорганической химии им. А.В. Николаева СО РАН

Email: kolodin@niic.nsc.ru
Rússia, Новосибирск

A. Kolodin

Институт неорганической химии им. А.В. Николаева СО РАН

Autor responsável pela correspondência
Email: kolodin@niic.nsc.ru
Rússia, Новосибирск

A. Bulavchenko

Институт неорганической химии им. А.В. Николаева СО РАН

Email: kolodin@niic.nsc.ru
Rússia, Новосибирск

Bibliografia

  1. Fernandes I.J., Aroche A.F., Schuck A., et al. Silver nanoparticle conductive inks: synthesis, characterization, and fabrication of inkjet-printed flexible electrodes // Scientific Reports. 2020. V. 10. № 1. P. 8878. https://doi.org/10.1038/s41598-020-65698-3
  2. Sreenilayam S.P., McCarthy É., McKeon L., et al. Additive-free silver nanoparticle ink development using flow-based laser ablation synthesis in solution and aerosol jet printing // Chemical Engineering Journal. 2022. V. 449. P. 137817. https://doi.org/10.1016/j.cej.2022.137817
  3. Mo L., Guo Z., Yang L., et al. Silver nanoparticles based ink with moderate sintering in flexible and printed electronics // International Journal of Molecular Sciences. 2019. V. 20. № 9. P. 2124. https://doi.org/10.3390/ijms20092124
  4. Iram N., Khan S.N., Ahmed M., et al. Synthesis and characterizations of silver nanoparticles-based conductive ink for high-frequency electronics // Physica Scripta. 2024. V. 99. № 8. P. 0859a8. https://doi.org/10.1088/1402-4896/ad664f
  5. Xu L., Wang Y.Y., Huang J., et al. Silver nanoparticles: Synthesis, medical applications and biosafety // Theranostics. 2020. V. 10. № 20. P. 8996–9031. https://doi.org/10.7150/thno.45413
  6. Демидова М.Г., Колодин А.Н., Максимовский Е.А., Булавченко А.И. Получение, оптические свойства и смачиваемость двусторонних пленок на основе нанокомпозита серебро–сорбитан моноолеат // Журнал Физической Химии. 2020. Т. 94. № 8. С. 1256–1262. https://doi.org/10.31857/s0044453720080063
  7. Kitenge D., Joshi R.K., Hirai M., et al. Nanostructured Silver Films for Surface Plasmon Resonance-Based Gas Sensors // IEEE Sensors Journal. 2009. V. 9. № 12. P. 1797–1801. https://doi.org/10.1109/JSEN.2009.2031168
  8. Ciesielski A., Skowronski L., Trzcinski M., et al. Controlling the optical parameters of self-assembled silver films with wetting layers and annealing // Applied Surface Science. 2017. V. 421. P. 349–356. https://doi.org/10.1016/j.apsusc.2017.01.039
  9. Abu Bakar N., Shapter J.G. Silver nanostar films for surface-enhanced Raman spectroscopy (SERS) of the pesticide imidacloprid // Heliyon. 2023. V. 9. № 3. P. e14686. https://doi.org/10.1016/j.heliyon.2023.e14686
  10. Khandelwal S., Devi N.R., Pappu S. Eco-friendly strategy for producing bio-based silver nanoparticles (AgNPs) employing sepioteuthis lessoniana ink, in addition to biological and degradation of dye applications // Appl Biochem Biotechnol. 2024. P. 1–23. https://doi.org/10.1007/s12010-024-05001-6
  11. Manikandan N.A., McCann R., Kakavas D., et al. Production of silver nano-inks and surface coatings for anti-microbial food packaging and its ecological impact // International Journal of Molecular Sciences. 2023. V. 24. № 6. P. 5341. https://doi.org/10.3390/ijms24065341
  12. Kirscht T., Jiang L., Liu F., et al. Silver nano-inks synthesized with biobased polymers for high-resolution electrohydrodynamic printing toward in-space manufacturing // ACS Appl. Mater. Interfaces. 2024. V. 16. № 33. P. 44225–44235. https://doi.org/10.1021/acsami.4c07592
  13. Zhang J., Ahmadi M., Fargas G., et al. Silver nanoparticles for conductive inks: from synthesis and ink formulation to their use in printing technologies // Metals. 2022. V. 12. № 2. P. 234. https://doi.org/10.3390/met12020234
  14. Tai Y.L., Wang Y.X., Yang Z.G., et al. Green approach to prepare silver nanoink with potentially high conductivity for printed electronics // Surface and Interface Analysis. 2011. V. 43. № 12. P. 1480–1485. https://doi.org/10.1002/sia.3737
  15. Popovetskiy P.S., Kolodin A.N., Maximovskiy E.A., et al. Electrophoretic concentration and production of conductive coatings from silver nanoparticles stabilized with non-ionic surfactant Span 80 // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021. V 625. P. 126961. https://doi.org/10.1016/j.colsurfa.2021.126961
  16. Шапаренко Н.О., Арымбаева А.Т., Демидова М.Г., Плюснин П.Е., Колодин А.Н., Максимовский Е.А., Корольков И.В., Булавченко А.И. Эмульсионный синтез и электрофоретическое концентрирование наночастиц золота в растворе бис(2-этилгексил)сульфосукцината натрия в н-декане // Коллоидный Журнал. 2019. Т. 81. № 4. С. 532–540. https://doi.org/10.1134/s0023291219040153
  17. Поповецкий П.С., Булавченко А.И., Арымбаева А.Т., Булавченко О.А., Петрова Н.И. Синтез и электрофоретическое концентрирование Ag–Cu-наночастиц типа ядро–оболочка в микроэмульсии AOT в н-декане // Журнал Физической Химии. 2019. Т. 93. № 8. С. 1237–1242. https://doi.org/10.1134/s0044453719080235
  18. Kolodin A.N., Bulavchenko O.A., Syrokvashin M.M., et al. Conductive silver films with tunable surface properties: thickness, roughness and porosity // Applied Surface Science. 2023. V. 629. № 4. P. 157392. https://doi.org/10.1016/j.apsusc.2023.157392
  19. Kolodin A.N. Hydrophilization and plasmonization of polystyrene substrate with Au nanoparticle organosol // Surfaces and Interfaces. 2022. V. 34. P. 102327. https://doi.org/10.1016/j.surfin.2022.102327
  20. Kolodin A.N., Syrokvashin M.M., Korotaev E.V. Gold nanoparticle microemulsion films with tunable surface plasmon resonance signal // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2024. V. 701. P. 134904. https://doi.org/10.1016/j.colsurfa.2024.134904
  21. Богданова Ю.Г., Должикова В.Д. Метод смачивания в физико-химических исследованиях поверхностных свойств твердых тел // Структура и динамика молекулярных систем. 2008. Т. 2. № 4-А. C. 124–133.
  22. Колодин А.Н., Суляева В.С., Поповецкий П.С. Исследование шероховатости пленок на основе органозолей наночастиц серебра методом определения краевых углов смачивания // Физикохимия Поверхности и Защита Материалов. 2020. Т. 56. № 6. С. 616–624. https://doi.org/10.31857/s0044185620060157
  23. Воробьев С.А., Флерко М.Ю., Новикова С.А., Мазурова Е.В., Томашевич Е.В., Лихацкий М.Н., Сайкова С.В., Самойло А.С., Золотовский Н.А., Волочаев М.Н. Синтез и исследование сверхконцентрированных органозолей наночастиц серебра // Коллоидный журнал. 2024. Т. 86. № 2. C. 193–203. https://doi.org/10.31857/S0023291224020047
  24. Булавченко А.И., Поповецкий П.С., Максимовский Е.А. Свойства проводящих пленок из электрофоретического концентрата наночастиц серебра и золота в АОТ // Журнал Физической Химии. 2013. Т. 87. № 10. С. 1779. https://doi.org/10.7868/s0044453713100063
  25. Kolodin A.N., Tatarchuk V.V., Bulavchenko A.I., et al. Synthesis and electrophoretic concentration of cadmium sulfide nanoparticles in reverse microemulsions of Tergitol NP-4 in n-Decane // Langmuir. 2017. V. 33. № 33. P. 8147–8156. https://doi.org/10.1021/acs.langmuir.7b00690
  26. Surface Texture (Surface Roughness, Waviness, and Lay), New York: The American Society of Mechanical Engineers, 2003.
  27. Gu C.D., Xu X.J., Tu J.P. Fabrication and wettability of nanoporous silver film on copper from choline chloride-based deep eutectic solvents // Journal of Physical Chemistry C. 2010. V. 114. № 32. P. 13614–13619. https://doi.org/10.1021/jp105182y
  28. Подлипская Т.Ю., Шапаренко Н.О., Булавченко А.И. Формирование покрытий SiO₂@NPs (NPs = Ag, Au, CdS) из декановых органогелей на предметных стеклах в присутствии AOT // Физикохимия поверхности и защита материалов. 2024. Т. 60. № 1. C. 47–56. https://doi.org/10.31857/S0044185624010051
  29. Rajesh Kumar B., Subba Rao T. AFM studies on surface morphology, topography and texture of nanostructured zinc aluminum oxide thin films // Digest Journal of Nanomaterials and Biostructures. 2012. V. 7. № 4. P. 1881–1889.
  30. Fowkes F.M., Mostafa M.A. Acid-base interactions in polymer adsorption // Ind. Eng. Chem. Prod. Res. Dev. 1978. V. 17. № 1. P. 3–7. https://doi.org/10.1021/i360065a002
  31. Owens D.K., Wendt R.C. Estimation of the surface free energy of polymers // J. Appl. Polym. Sci. 1969. V. 13. № 8. P. 1741–1747. https://doi.org/10.1002/app.1969.070130815
  32. Wu S. Polymer Interface and Adhesion // New York: Marcel Dekker. 1982. p. 169–214.
  33. Van Oss C.J., Chaudhury M.K., Good R.J. Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems // Chem. Rev. 1988. V. 88. № 6. P. 927–941. https://doi.org/10.1021/CR00088A006
  34. Schultz J., Tsutsumi K., Donnet J.-B. Surface properties of high-energy solids. I. Determination of the dispersive component of the surface free energy of mica and its energy of adhesion to water and n-alkanes // J. Colloid. Interface Sci. 1977. V. 59. № 2. P. 272–276. https://doi.org/10.1016/0021-9797(77)90008-X
  35. Schultz J., Tsutsumi K., Donnet, J.-B. Surface properties of high-energy solids. II. Determination of the nondispersive component of the surface free energy of mica and its energy of adhesion to polar liquids // J. Colloid. Interface Sci. 1977. V. 59. № 2. P. 277–282. https://doi.org/10.1016/0021-9797(77)90009-1
  36. Washburn E.W. The dynamics of capillary flow // Phys. Rev. 1921. V. 17. P. 273–283. https://doi.org/10.1103/PhysRev.17.273
  37. Булавченко А.И., Демидова М.Г., Поповецкий П.С., Подлипская Т.Ю., Плюснин П.Е. Отделение избытка ПАВ от наночастиц серебра и золота в мицеллярных концентратах методом неводного электрофореза // Журнал Физической Химии. 2017. Т. 91. № 8. С. 1344–1352. https://doi.org/10.7868/s0044453717080088
  38. Boinovich L.B., Emelyanenko A.M., Emelyanenko K.A., Domantovsky A.G., Shiryaev A.A. Comment on “Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications” by Duong V. Ta, Andrew Dunn, Thomas J. Wasley, Robert W. Kay, Jonathan Stringer, Patrick J. Smith, Colm Connaughton, Jonathan D. Shephard (Appl. Surf. Sci. 357 (2015) 248–254) // Applied Surface Science. 2016. V. 379. P. 111–113. https://doi.org/10.1016/j.apsusc.2016.04.056
  39. Wenzel R.N. Resistance of solid surfaces to wetting by water // Ind. Eng. Chem. 1936. V. 28. № 8. P. 988–994. https://doi.org/10.1021/ie50320a024
  40. Angelo M.S., McCandless B.E., Birkmire R.W., et al. (2007). Contact wetting angle as a characterization technique for processing CdTe/CdS solar cells // Progress in Photovoltaics: Research and Applications. 2007. V. 15. № 2. P. 93–111. https://doi.org/10.1002/pip.708

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Dependence of the contact angle of water on silver films on the calcination temperature (a), as well as optical microscopy images in direct (b) and reverse light (c) modes of silver films without calcination (background systems) and calcined at T = 150, 200 and 250°C.

Baixar (399KB)
3. Fig. 2. AFM 3D scans and roughness profiles of the substrate (a) and silver films (without calcination (b) and calcined at a temperature of 150 (c), 200 (d), 250 (e), 300 (e), 350 (g), 400 (h), 450 (i), 500°C (j)). The dotted lines on the scans indicate the areas where the profiles were recorded.

Baixar (538KB)
4. Fig. 3. Change in the arithmetic mean roughness (a), root-mean-square roughness (b), excess (c) and asymmetry (d) of the roughness profile of silver films with variation in the calcination temperature. The substrate data are marked with a black marker.

Baixar (140KB)
5. Fig. 4. Changes in the values ​​of depth (a) and diameter of the pore inlet (b), as well as porosity (c) and density (d) of silver films (after calcination at a temperature of 150–500°C).

Baixar (139KB)
6. Fig. 5. Characteristics of the organosol of silver nanoparticles: data from transmission electron microscopy (a), photon correlation spectroscopy (b) and the method of phase analysis of scattered light (c).

Baixar (176KB)
7. Fig. 6. Comparison of roughness and wettability data (a), as well as elemental composition and wettability (b) of silver films calcined at a temperature of 300–500°C. The dotted lines indicate the correlation dependences (Rq = 0.0303cosθ – 0.0134, R2 = 0.8919 and C(O) = 20.61 cosθ + 3.3661, R2 = 0.9950).

Baixar (104KB)
8. Fig. 7. Results of current spectroscopy (2D AFM scan and voltammogram in the inset) of the surface of silver films before (a) and after (b) calcination at a temperature of 250°C. The location of the voltammogram recording is indicated by a dot on the scan.

Baixar (302KB)
9. Fig. 8. Dependence of surface resistance on the annealing temperature of the silver film.

Baixar (69KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025