Dispersion characteristics of spin waves in a nanoscale magnon crystal

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The paper presents the results of a study of the features of spin wave propagation in a magnon crystal based on a nanoscale ferromagnetic film with a periodic system of grooves on the surface. Micromagnetic modeling was performed in the MuMax3 environment. It is established that additional hybrid modes on the dispersion characteristic for a magnon crystal near each main width mode are formed. The ratio of ridge to groove widths affects the energy distribution between hybrid modes and the cutoff frequency of the main modes. The influence of the ridge/groove ratio on the formation of band gaps based on dispersion and amplitude-frequency characteristics is analyzed. It is shown that the most pronounced band gaps are observed for large ridge/groove width ratios. Also, an increase in the ridge/groove ratio and an increase in the groove depth leads to an increase in the number of orders of pronounced Bragg resonances.

Texto integral

Acesso é fechado

Sobre autores

V. Balayeva

Saratov State University named after N.G. Chernyshevsky

Email: mamorozovama@yandex.ru
Rússia, Astrakhanskaya Str., 83, Saratov, 410012

D. Romanenko

Saratov State University named after N.G. Chernyshevsky

Email: mamorozovama@yandex.ru
Rússia, Astrakhanskaya Str., 83, Saratov, 410012

M. Morozova

Saratov State University named after N.G. Chernyshevsky

Autor responsável pela correspondência
Email: mamorozovama@yandex.ru
Rússia, Astrakhanskaya Str., 83, Saratov, 410012

Bibliografia

  1. Гуляев Ю.В., Никитов С.А. // ДАН. Сер. Физика. 2001. Т. 380. С. 469.
  2. Kruglyak V.V., Dvornik M., Mikhaylovskiy R.V. et al. Metamaterial. / Ed. by X.-Y. Jiang. L.: InTechOpen, 2012. P. 341.
  3. Chumak A.V., Serga A.A., Hillebrands B. // J. Phys.: Appl. Phys. 2017. V. 50. № 24. P. 244001.
  4. Frey P., Nikitin A.A., Bozhko D.A. et al. // Commun. Phys. 2020. V. 3. № 1. Article No. 17.
  5. Goto T., Shimada K., NakamuraY. et al. // Phys. Rev. Appl. 2019. V. 11. № 1. P. 014033.
  6. Chumak A.V., Kabos V.P., Wu M. et al. // IEEE Trans. 2022. V. MAG-58. № 6. Article No. 0800172.
  7. Barman A., Gubbiotti G., Ladak S. et al. // J. Phys.: Cond. Matt. 2021. V. 33. № 41. P. 413001.
  8. Wang Q., Kewenig M., Schneider M. et al. // Nature Electronics. 2020. V. 3. № 12. V. 765.
  9. Sadovnikov A.V., Beginin E.N., Morozova M.A. et al. // Appl. Phys. Lett. 2016. V. 109. № 4. P. 042407.
  10. Wang Zh.K., Zhang V.L., Lim H.S. et al. // ACS Nano. 2010. V. 4. № 2. P. 643.
  11. Böttcher T., Ruhwedel M., Levchenko K.O. et al. // Appl. Phys. Lett. 2022. V. 120. № 10. P. 102401.
  12. Wang Q., Verba R., Heinz B. et al. // arxiv.org/pdf/2207.01121.
  13. Sheshukova S.E., Beginin E.N., Sadovnikov A.V. et al. // IEEE Magnetics Lett. 2014. V. 5. Article No. 3700204.
  14. Дроздовский А.В., Черкасский М.А., Устинов А.Б. и др. // Письма в ЖЭТФ. 2010. Т. 91. № 1. С. 17.
  15. Ustinov A.B., Kalinikos B.A., Demidov V.E., Demokritov S.O. // Phys. Rev. B.2010. V. 81. № 18. P. 180406.
  16. Morozova M.A., Lobanov N.D., Matveev O.V. et al. // J. Magn. Magn. Mater. 2023. V. 584. P. 171051.
  17. Collet M., Gladii O., Evelt M. et al. // Appl. Phys. Lett. 2017. V. 110. № 9. P. 092408.
  18. Evelt M., Demidov V.E., Bessonov V. // Appl. Phys. Lett. 2016. Т. 108. № 17. P. 172406.
  19. Morozova M.A., Matveev O.V., Romanenko D.V. et al. // Phys. Rev. B. 2024. V. 110. № 10. P. 104408.
  20. Morozova M.A., Matveev O.V., Markeev A.M. et al. // Phys. Rev. B. 2023. V. 108. № 17. P. 174407.
  21. Wang Q., Rippo P., Verba R. et al. // Science Advances. 2018. V. 4. № 1. P. e1701517.
  22. Gruszecki P., Kasprzak M., Serebryannikov A.E. et al. // Scientific Reports. 2016. V. 6. Article No. 22367.
  23. Qin H., Hämäläinen S.J., Arjas K. et al. // Phys. Rev. B. 2018. V. 98. № 22. P. 224422.
  24. Goto T., Yoshimoto T., Iwamoto B. et al. // Scientific Reports. 2019. V. 9. Article No. 16472.
  25. Wang Q., Chumak A.V., Pirro P. // Nature Commun. 2021. V. 12. № 1. P. 2636.
  26. Wojewoda O., Holobrádek J., Pavelka D. et al. // Appl. Phys. Lett. 2024. V. 125. № 13. P. 132401.
  27. Sadovnikov A.V., Beginin E.N., Odincov S.A. et al. // Appl. Phys. Lett. 2016. V. 108. № 17. P. 172411.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Dispersion characteristics with the designation of the mode order n for different structure widths: (a) – ferromagnetic film without grooves, w = 1 μm; (b) – MC, w = 1 μm; (c) – MC, w = 1 μm (enlarged scale); (d) – MC, w = 3 μm; (d) – MC, w = 5 μm; (e) – MC, w = 10 μm. Other parameters: h = 20 nm, Δ = 12 μm, a/b = 6/6.

Baixar (675KB)
3. Fig. 2. Dispersion characteristics with the designation of forbidden zones for different values of the ratio a/b: 1/5 (a); 2/4 (b); 3/3 (c); 4/2 (d); 5/1 (d). Other parameters: Δ = 6 μm, w = 1 μm, h = 20 nm.

Baixar (589KB)
4. Fig. 3. Frequency response with the designation of forbidden zones for different values of the ratio a/b: 1/5 (a); 2/4 (b); 3/3 (c); 4/2 (d); 5/1 (d). Other parameters: Δ = 6 μm, w =1 μm, h = 20 nm.

Baixar (263KB)
5. Fig. 4. Dispersion characteristics with the designation of forbidden zones for different values of the ratio a/b: 1/5 (a); 2/4 (b); 3/3 (c); 4/2 (d); 5/1 (d). Other parameters: Δ = 6 μm, w = 1 μm, h = 30 nm.

Baixar (575KB)
6. Fig. 5. Frequency response with the designation of forbidden zones for different values of the ratio a/b: 1/5 (a); 2/4 (b); 3/3 (c); 4/2 (d); 5/1 (d). Other parameters: Δ = 6 μm, w = 1 μm, h = 30 nm.

Baixar (267KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025