Экономически эффективная реконструкция существующих двухпотоковых систем теплообмена
- Авторы: Ульев Л.М.1, Гиль Т.А.1, Норин В.В.1, Кувардина Е.В.2, Кондрашев Д.О.2
-
Учреждения:
- Национальный исследовательский Томский политехнический университет
- ООО “Газпромнефть – Промышленные инновации”
- Выпуск: Том 59, № 1 (2025)
- Страницы: 102–117
- Раздел: Статьи
- Статья опубликована: 02.07.2025
- URL: https://ta-journal.ru/0040-3571/article/view/686530
- DOI: https://doi.org/10.31857/S0040357125010127
- EDN: https://elibrary.ru/twzpek
- ID: 686530
Цитировать
Аннотация
В данной работе предложен метод для оптимизации двухпотоковой системы теплообмена, учитывающий технические ограничения, налагаемые теплообменным оборудованием, и экономическую эффективность проекта реконструкции. Оптимизация теплообменной сети производится с учетом необходимости проведения экспертизы промышленной безопасности в случае превышения расчетных температур для теплообменных аппаратов технологическими потоками. Данный метод был применен для оптимизации энергопотребления на реальной установке гидрокрекинга. Рассмотрены два типа теплообменников – кожухотрубчатые и пластинчатые для возможного увеличения площади поверхности теплообмена в существующей системе рекуперации теплоты. Для кожухотрубчатых теплообменных аппаратов минимальная приведенная стоимость проекта реконструкции наблюдается при увеличении поверхности теплообмена на 500 м2, что соответствует установке двухсекционного теплообменника. Это позволяет снизить удельное потребление горячих утилит на 51%, а холодных – на 31%. При этом простой срок окупаемости такого проекта составляет ~1.5 года. В то же время для пластинчатых теплообменных аппаратов минимальные годовые затраты наблюдаются при увеличении теплообменной поверхности на 400 м2. Стоимость такого проекта модернизации на 18% меньше, чем при использовании кожухотрубчатых теплообменников, а снижение удельного потребления горячих и холодных утилит составляет 66% и 40% соответственно.
Ключевые слова
Полный текст

Об авторах
Л. М. Ульев
Национальный исследовательский Томский политехнический университет
Email: tag7@tpu.ru
Россия, Томск
Т. А. Гиль
Национальный исследовательский Томский политехнический университет
Автор, ответственный за переписку.
Email: tag7@tpu.ru
Россия, Томск
В. В. Норин
Национальный исследовательский Томский политехнический университет
Email: tag7@tpu.ru
Россия, Томск
Е. В. Кувардина
ООО “Газпромнефть – Промышленные инновации”
Email: tag7@tpu.ru
Россия, Санкт-Петербург
Д. О. Кондрашев
ООО “Газпромнефть – Промышленные инновации”
Email: tag7@tpu.ru
Россия, Санкт-Петербург
Список литературы
- Статистический ежегодник мировой энергетики 2023. [Электронный ресурс] – режим доступа: https://energystats.enerdata.net/total-energy/world-consumption-statistics.html (дата обращения: 15.09.2024).
- Primary Energy Consumption: 2050 Forecasting. Enerdata [Электронный ресурс] – режим доступа: https://eneroutlook.enerdata.net/forecast-world-energy-primary-consumption.html (дата обращения: 15.09.2024).
- World Energy Balance 2022. [Электронный ресурс] – режим доступа: https://www.iea.org/data-and-statistics/dataproduct/world-energy-balances (дата обращения: 17.09.2024).
- Mistry M., Misener R. Optimising heat exchanger network synthesis using convexity properties of the logarithmic mean temperature difference // Computer and Chemical Engineering. 2016. V. 94. P. 17.
- Stevenson P., Hyde R. The potential for recovering and using surplus heat from industry. Department of Energy & Climate Change, 2014.
- Energy Flow Charts. [Электронный ресурс] – режим доступа: https://flowcharts.llnl.gov (дата обращения: 15.09.2024).
- Ulyev L.M., Kanishev M.V., Vasilyev M.A., Maatouk A. Energy Efficiency Retrofit of Two-Flow Heat Exchanger System // Chemical Engineering Transactions. 2018. V. 70. P. 1513.
- SiteSoft. Российский статистический ежегодник. [Электронный ресурс] – режим доступа: https://rosstat.gov.ru/folder/210/document/12994 (дата обращения: 02.10.2024).
- Ахметов С.А., Баязитов М.И., Кузеев И.Р., Сериков Т.П. Технология и оборудование процессов переработки нефти и газа. СПб.: Недра, 2006.
- The Paris Agreement. UNFCCC Available [Электронный ресурс] – режим доступа: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (дата обращения: 15.09.2024).
- Rashid K. Hydrocraking experience in a Gulf Refinery // AIChE Spring Meeting and Global Congress on Process Safety. 2007.
- Pham H.H., Kim K.H., Go K.S., Nho N.S., Kim W., Kwon E.H., Jung R.H., Lim Y., Lim S.H., Pham D.A. Hydrocracking and hydrotreating reaction kinetics of heavy oil in CSTR using a dispersed catalyst // Journal of Petroleum Science and Engineering. 2021. V. 197. P. 107997.
- Cui C., Duc Long N.V., Sun J., Lee M. Electrical-driven self-heat recuperative pressure-swing azeotropic distillation to minimize process cost and CO2 emission: Process electrification and simultaneous optimization // Energy. 2020. V. 195. P. 116998.
- Zhu J., Chen L., Liu Z., Hao L., Wei H. Synergy of electrification and energy efficiency improvement via vapor recompression heat pump and heat exchanger network to achieve decarbonization of extractive distillation // Separation and Purification Technology. 2022. V. 293. P. 121065.
- Смит Р., Клемеш Й., Товажнянский Л.Л., Капустенко П.А., Ульев Л.М. Основы интеграции тепловых процессов. Харьков: НТУ “ХПИ”, 2000.
- Товажнянский Л.Л., Капустенко П.А., Ульев Л.М., Болдырев С.А., Арсеньева О.П., Тарновский М.В. Интеграция тепловых процессов на установке первичной переработки нефти АВТ А12/2 при работе в зимнее время // Теорет. основы хим. технологии. 2009. Т. 43. № 6. C. 665.
- Ульев Л.М., Кузнецов М.Т., Гиль Т.А., Норин В.В., Каракчиева Н.И., Князев А.С., Саитова А.А., Кувардина Е.В. Повышение энергоэффективности установки подготовки и стабилизации нефти на промысле // Вестник Томского государственного университета. Химия. 2023. № 32. С. 172.
- Gil T., Ilchenko M., Kaldybaeva B.M., Mironov A., Boldyryev S. Economic Assessment of Heat Exchanger Network Retrofit Options Based on Historical Data of Energy Price Trends // Chemical Engineering Transactions. 2021. V. 88. P. 343.
- Boldyryev S., Gil T., Ilchenko M. Environmental and economic assessment of the efficiency of heat exchanger network retrofit options based on the experience of society and energy price records // Energy. 2022. V. 260. P. 125155.
- Зиятдинов Н.Н., Емельянов И.И., Лаптева Т.В., Рыжова А. А., Игнатьев А.Н. Метод автоматизированного синтеза оптимальных систем теплообмена на основе принципа закрепления переменных // Теоретические основы химической технологии. 2020. V. 54. № 2. P. 144.
- Dhole V.R., Linnhoff B. Total site targets for fuel, co-generation, emissions, and cooling // Computers & Chemical Engineering. 1993. V. 17. P. S101.
- Boldyryev S., Gil T., Khussanov A., Krajačić G. Energy-Saving Potential of an Existing Monomer Production by Combined Process and Inter-Plant Integration // Chemical Engineering Transactions. 2021. V. 94. P. 613.
- Boldyryev S., Gil T., Krajačić G., Khussanov A. Total site targeting with the simultaneous use of intermediate utilities and power cogeneration at the polymer plant // Energy. 2023. V. 279. P. 128034.
- Ульев Л.М., Васильев М.А. Теплоэнергетическая Интеграция Процессов Переработки Продуктов Коксования // Теорет. основы хим. технологии. 2015. Т. 49. № 5. C. 582.
- Dyudnev V., Korotkii V., Novgorodtsev S., Boldyryev S., Di Pretoro A., Bragina J., Trusova M., Manenti F. Energy Analysis and Process Simulation for the Energy Efficiency Improvement of Existing Chemical Plants // Chemical Engineering Transactions. 2021. V. 86. P. 715.
- Alhajri I.H., Gadalla M.A., Abdelaziz O.Y., Ashour F.H. Retrofit of heat exchanger networks by graphical Pinch Analysis – A case study of a crude oil refinery in Kuwait // Case Studies in Thermal Engineering. 2021. V. 26. P. 101030.
- Емельянов И.И., Зиятдинов Н.Н., Лаптева Т.В., Рыжова А.А., Семин Р.В. Автоматизированное технологическое проектирование оптимальной системы теплообмена установки брагоректификации // Теорет. основы хим. технологии. 2021. T. 55. № 6. С. 670.
- Ciric A.R., Floudas C.A. A comprehensive optimization model of the heat exchanger network retrofit problem // Heat Recovery Systems and CHP. 1990. V. 10. № 4. P. 407.
- Aguitoni M.C., Pavão L.V., Antonio da Silva Sá Ravagnani M. Heat exchanger network synthesis combining Simulated Annealing and Differential Evolution // Energy. 2019. V. 181. P. 654.
- Čuček L., Boldyryev S., Klemeš J.J., Kravanja Z., Krajačić G., Varbanov P.S., Duić N. Approaches for retrofitting heat exchanger networks within processes and Total Sites // Journal of Cleaner Production. 2019. V. 211. P. 884.
- Kemp I.C. Pinch Analysis and Process Integration: A User Guide on Process Integration for the Efficient Use of Energy. Amsterdam: Elsevier, 2011.
- Мешалкин В.П., Товажнянский Л.Л., Ульев Л.М., Мельниковская Л.А., Ходченко С.М. Энергоресурсоэффективная реконструкция установки нефтепереработки на основе пинч-анализа с учетом внешних тепловых потерь // Теорет. основы хим. технологии. 2012. Т. 46. № 5. C. 491.
- Chew K.H., Klemeš J.J., Wan Alwi S.R., Manan Z.A., Reverberi A.P. Total Site Heat Integration Considering Pressure Drops: 2 // Energies. 2015. V. 8. № 2. P. 1114.
- Kuznetsov M., Boldyryev S., Kenzhebekov D., Kaldybaeva B. Improving inter-plant integration of syngas production technologies by the recycling of CO2 and by-product of the Fischer-Tropsch process // International Journal of Hydrogen Energy. 2022. V. 7. № 74. P. 31755.
- Boldyryev S., Shamraev A.A., Shamraeva E.O. The retrofit of the calcium chloride production by Pinch approach and process modifications // Applied Thermal Engineering. 2021. V. 189. P. 116775.
- Boldyryev S., Mikulcic H., Ulyev L., Duic N. Time Super Targeting: Planning of Optimal HEN Design Accounting Energy Prices // Chemical Engineering Transactions. 2017. V. 61. P. 1903.
- Tovazhnyansky L., Kapustenko P., Ulyev L., Boldyryev S., Arsenyeva O. Process integration of sodium hypophosphite production // Applied Thermal Engineering. 2010. V. 30. № 16. P. 2306.
- Tovazhnyansky L., Kapustenko P., Ulyev L., Boldyryev S. Heat integration improvement for benzene hydrocarbons extraction from coke-oven gas // Chemical Engineering Transaction. 2011. V. 25. P. 153.
- Ulyev L.M., Kapustenko P.A., Melnykovskaya L.A., Nechyporenko D.D. The Precise Definition of the Payload Tube Furnaces for Units of Primary Oil Reforming // Chemical Engineering Transaction. 2013. V. 35. P. 247.
- Ulyev L.M., Kapustenko P.O., Nechiporenko D.D. The Choice of the Optimal Retrofit Method for Sections of the Catalytic Reforming Unit // Chemical Engineering Transactions. 2014. V. 39. P. 169.
- Ulyev L.M., Vasilyev M.A. Heat and Power Integration of Processes for the Refinement of Coking Products // Theoretical Foundations of Chemical Engineering. 2015. V. 49. № 5. P. 676.
- Kapustenko P.O., Ulyev L.M., Ilchenko M.V., Arsenyeva O.P. Integration Processes of Benzene-toluene-xylen Fractionation, Hydrogenation, Hydrodesulphurization and Hydrothermoprocessing Installation of Benzene Unit // Chemical Engineering Transactions. 2015. V. 45. P. 235.
- Ulyev L., Vasilyev M., Maatouk A., Duic N., Khusanov A. Total Site Integration of Light Hydrocarbons Separation Process // Chemical Engineering Transaction. 2016. V. 52. P. 1.
- Boldyryev S., Gil. T. Debottlenecking of existing hydrocracking unit by improved heat recovery for energy and carbon dioxide savings // Energy Conversion and Management. 2021. V. 238. P. 114164.
- Hall G., Ahmad S., Smith R. Capital Cost Targeting for Heat Exchanger Networks Comprising Mixed Materials of Rating and Exchanger Types // Computers & Chemical Engineering. 1990. V. 14. № 3. P. 319.
- Канищев М.В., Мешалкин В.П., Ульев Л.М. Определение энергоэффективности установки первичной переработки нефти // Территория “НЕФТЕГАЗ”. 2019. № 7, 8. С. 80.
- Smith R. Chemical Process Design and Integration. 2nd ed. Chichester: John Wiley & Sons, 2016.
- Graham R.L., Knuth D.E., Patashik O. Concrete Mathematics. A Foundation for Computer Science. Second Edition. Amsterdam: Addison-Wesley, 1994.
- Arsenyeva O., Orosz Á., Friedler F. Retrofit Synthesis of Industrial Heat Exchanger Networks with Different Types of Heat Exchangers // Chemical Engineering Transaction. 2021. V. 88. P. 613.
- Klemes J.J., Arsenyeva O., Kapustenko P.O., Tovazhnyanskyy L. Compact Heat Exchangers for Energy Transfer Intensification: Low Grade Heat and Fouling Mitigation: CRC Press, 2015.
- Стоимость мазута топочного (котельного) с доставкой от производителя. [Электронный ресурс] – режим доступа: https://www.trader-oil.ru/catalog/topochnyy-mazut/ (дата обращения: 01.09.2024).
Дополнительные файлы
