Synthesis of TiO₂ nanopowder by thermal decomposition of titanium peroxo complex in the presence of NaCl as a template

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Dispersed titanium dioxide was synthesized by thermal decomposition (700°C) of titanium peroxo complex in the presence of sodium chloride as a template at different precursor/template ratios. Its comparative analysis was carried out with titanium dioxide obtained in the absence of a template. Titanium dioxide is represented by two crystalline phases - anatase and rutile. It has been established that the presence of sodium chloride during the synthesis of nanodispersed TiO₂ leads to the formation of an aggregate of spherical TiO₂ crystallites with an average diameter of 19 nm. The dominant crystalline phase is anatase (>90%). With an increase in the NaCl content in the initial mixture, an increase in the proportion of the <15 nm crystallites fraction, an increase in the proportion of the anatase phase, and an increase in the Ssp value are observed.

Full Text

Restricted Access

About the authors

A. B. Shishmakov

Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences

Email: Mikushina@ios.uran.ru
Russian Federation, st. S. Kovalevskaya, d. 22/20, Ekaterinburg, 620108

Yu. V. Mikushina

Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: Mikushina@ios.uran.ru
Russian Federation, st. S. Kovalevskaya, d. 22/20, Ekaterinburg, 620108

O. V. Koryakova

Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences

Email: Mikushina@ios.uran.ru
Russian Federation, st. S. Kovalevskaya, d. 22/20, Ekaterinburg, 620108

References

  1. Лукутцова Н.П., Постникова О.А., Пыкин А.А. и др. // Вестн. БГТУ им. В.Г. Шухова. 2015. № 3. C. 54.
  2. Luévano-Hipуlito E., Martínez-de la Cruz A. // Constr. Build. Mater. 2018. V. 174. P. 302.https://doi.org/10.1016/j.conbuildmat.2018.04.095
  3. Verma R., Singh S., Dalai M.K. et al. // Mater. Des. 2017. V. 133. P. 10.https://doi.org/10.1016/j.matdes.2017.07.042
  4. Коботаева Н.С., Скороходова Т.С. // Химия в интересах устойчивого развития. 2019. Т. 27. № 1. С. 13.https://doi.org/10.15372/KhUR20190102
  5. Dudanov I.P., Vinogradov V.V., Chrishtop V.V. et al. // Res. Pract. Med. J. 2021. V. 8. № 1. P. 30.https://doi.org/10.17709/2409-2231-2021-8-1-3
  6. Ремпель А.А., Валеева А.А. // Изв. АН. Сер. Хим. 2019. V. 68. № 12. C. 2163.https://doi.org/10.1007/s11172-019-2685-y
  7. Бессуднова Е.В., Шикина Н.В., Исмагилов З.Р. // Альтернативная энергетика и экология (ISJAEE). 2014. Т. 7. C. 39.
  8. Губарева Е.Н., Баскаков П.С., Строкова В.В. и др. // Изв. СПбГТИ (ТУ). 2019. № 48. С. 78.
  9. Евсейчик М.А., Максимов С.Е., Хорошко Л.С. и др. // Журн. БГУ. Физика. 2023. № 2. C. 58.
  10. Yang J., Mei S., Ferreira J.M.F. // Mater. Sci. Eng. C. 2001. V. 15. № 1–2. P. 183.https://doi.org/10.1016/S0928-4931(01)00274-0
  11. Гаврилов А.И., Родионов И.А., Гаврилова Д.Ю. и др. // Докл. АН. 2012. Т. 444. № 5. С. 510.
  12. Khomane R.B. // J. Colloid Interface Sci. 2011. V. 356. P. 369.https://doi.org/10.1016/j.jcis.2010.12.048
  13. Sonawane R.S., Hegde S.G., Dongare M.K. // Mater. Chem. Phys. 2003. V. 77. P. 744.https://doi.org/10.1016/S0254-0584(02)00138-4
  14. Kobayashi M., Petrykin V., Tomita K. et al. // J. Ceram. Soc. Jpn. (JCS-Japan). 2008. V. 116. P. 578.https://doi.org/10.2109/jcersj2.116.578
  15. Krivtsov I., Ilkaeva M., Avdin V. et al. // J. Colloid Interface Sci. 2015. V. 444. P. 87.https://doi.org/10.1016/J.JCIS.2014.12.044
  16. Гейнц Н.С., Воробьев Д.В., Корина Е.А. и др. // Вестн. ЮУрГУ. Сер. Химия. 2021. Т. 13. № 2. С. 79.https://doi.org/10.14529/chem210208
  17. Яминский И.В., Ахметова А.И., Курьяков В.Н. и др. // Неорган. материалы. 2020. T. 56. № 11. С. 1221.http://doi.org/10.31857/S0002337X20110172
  18. Mendonça V.R., Lopes O.F., Avansi W. Jr. et al. // Ceram. Int. 2019. V. 45. № 17. P. 22998.https://doi.org/10.1016/j.ceramint.2019.07.345
  19. Montanhera M.A., Venancio R.H.D., Pereira É.A. et al. // Mater. Res. 2021. V. 24. P. 1.https://doi.org/10.1590/1980-5373-MR-2020-0377
  20. Savinkina E.V., Obolenskaya L.N., Kuzmicheva G.M. et al. // J. Mater. Res. 2018. V. 33. № 10. P. 1422.https://doi.org/10.1557/jmr.2018.52
  21. Nag M., Ghosh S., Rana R.K. et al. // J. Phys. Chem. Lett. 2010. V. 1. P. 2881.https://doi.org/10.1021/jz101137m
  22. Etacheri V., Seery M.K., Hinder S.J. et al. // Adv. Funct. Mater. 2011. V. 21. P. 3744.https://doi.org/10.1002/adfm.201100301
  23. Kobayashi M., Kato H., Kakihana M. // Nanomater. Nanotechnol. (NAX). 2013. V. 3. № 1. Р. 1.
  24. Баян Е.М., Лупейко Т.Г., Пустовая Л.Е. // Хим. физика. 2019. T. 38. № 4. C. 84.https://doi.org/10.1134/S0207401X19040022
  25. Ahn J.Y., Cheon H.K., Kim W.D. et al. // Chem. Eng. J. 2012. V. 188. P. 216.https://doi.org/10.1016/j.cej.2012.02.007
  26. Комаров В.С. // Вес. Нац. акад. навук Беларусi. Сер. хiм. навук. 2014. № 1. С. 16.
  27. Li N., An D., Yi Z. et al. // Ceram. Int. 2022. V. 48. № 2. P. 2637.https://doi.org/10.1016/j.ceramint.2021.10.047
  28. Zhu J., Wang B., Jin P. // RSC Adv. 2015. V. 5. P. 92004.https://doi.org/10.1039/C5RA18744C
  29. Liebertseder M., Wang D., Cavusoglu G. et al. // Nanoscale. 2021. V. 13. P. 2005.https://doi.org/10.1039/d0nr08871d
  30. Liu R., Yang S., Wang F. et al. // ACS Appl. Mater. Interfaces. 2012. V. 4. № 3. P. 1537.https://doi.org/10.1021/am201756m
  31. Raskó J., Kiss J. // Catal Lett. 2006. V. 111. № 1–2. P. 87.https://doi.org/10.1007/s10562-006-0133-8
  32. Mino L., Spoto G., Ferrari A.M. // J. Phys. Chem. C. 2014. V. 118. № 43. P. 25016.https://doi.org/doi.org/10.1021/jp507443k
  33. Shtyka O., Shatsila V., Ciesielski R. et al. // Catalysts. 2021. V. 11. P. 1.https://doi.org/10.3390/catal11010047
  34. Шишмаков А.Б., Корякова О.В., Микушина Ю.В. и др. // Журн. неорган. химии. 2014. Т. 59. № 9. С. 1210.https://doi.org/10.7868/S0044457X14090207
  35. Wu J.-M. // J. Cryst. Growth. 2004. V. 269. № 2. P. 347.https://doi.org/10.1016/j.jcrysgro.2004.05.023
  36. Shaporev V.P., Shestopalov O.V., Pitak I.V. // Sci. J. “ScienceRise”. 2015. V. 1/2. P. 10.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. IR spectra of samples: 1 – TiO₂; 2 – TiO₂/NaCl(1); 3 – TiO₂/NaCl(2); 4 – TiO₂/NaCl(3).

Download (194KB)
3. Fig. 2. IR spectra of samples: 1 – TiO₂; 2 – TiO₂(1); 3 – TiO₂(2); 4 – TiO₂(3).

Download (225KB)
4. Fig. 3. Fragment of the diffraction pattern of samples: 1 – TiO₂; 2 – TiO₂(1); 3 – TiO₂(2); 4 – TiO₂(3).

Download (128KB)
5. Rice. 4. Microphotographs of samples: a, b – TiO₂; c – TiO₂/NaCl(3); d–g – TiO₂(1); h – TiO₂(2); and – TiO₂(3).

Download (1MB)
6. Fig. 5. Graph of the dependence of hydrogen peroxide conversion on TiO₂ and TiO₂(1–3) samples on the NaCl/TiO₂ ratio in the calcined material.

Download (69KB)

Copyright (c) 2025 Russian Academy of Sciences