Platinum dibromide complexes with 10-(aryl)phenoxarsines: synthesis, structure, luminescent and biological properties

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The reactions of 10-(aryl)phenoxarsines (L1 = 10-(4-tolyl)phenoxarsine, L2 is 10-(4-fluorophenyl) phenoxarsine, L3 is 10-(3-fluorophenyl)phenoxarsine, and L4 is 10-(2-methoxyphenyl)phenoxarsine) with Pt(COD)Br2 afford platinum(II) complexes [Pt(L1–4)2Br2] (I–IV). The complexes are characterized by elemental analysis, IR spectroscopy, mass spectrometry, and NMR (1Н, 13С, 195Pt) spectroscopy. The Pt(II) complexes in solutions exist as two isomers mutually exchanging at a rate intermediate in the NMR time scale. The molecular structures of complexes cis-II · chloroform, trans-II, and cis-IV · dichloromethane are determined by XRD (CIF files CCDC nos. 2368769 (cis-II · chloroform), 2368770 (trans-II), and 2368771 (cis-IV · chloroform)). The platinum(II) dibromide complexes can crystallize as both cis and trans isomers. The study of the photophysical properties of the platinum(II) complexes shows that the trans isomers are characterized by emission in the orange spectral range, whereas the cis isomers almost does not luminesce. 10-(Aryl)phenoxarsines and their platinum(II) complexes are tested to cytotoxicity against the M-HeLa and HuTu 80 human cancer cell lines and hepatocyte-like cells of the Сhang liver line.

Texto integral

Acesso é fechado

Sobre autores

M. Galimova

Federal Research Center “Kazan Scientific Center of Russian Academy of Sciences”

Autor responsável pela correspondência
Email: milya1949@mail.ru

Arbuzov Institute of Organic and Physical Chemistry

Rússia, Kazan

S. Kondrashova

Federal Research Center “Kazan Scientific Center of Russian Academy of Sciences”

Email: milya1949@mail.ru

Arbuzov Institute of Organic and Physical Chemistry

Rússia, Kazan

Sh. Latypov

Federal Research Center “Kazan Scientific Center of Russian Academy of Sciences”

Email: milya1949@mail.ru

Arbuzov Institute of Organic and Physical Chemistry

Rússia, Kazan

A. Dobrynin

Federal Research Center “Kazan Scientific Center of Russian Academy of Sciences”

Email: milya1949@mail.ru

Arbuzov Institute of Organic and Physical Chemistry

Rússia, Kazan

I. Kolesnikov

St. Petersburg State University

Email: milya1949@mail.ru

Center for Optical and Laser Materials Research

Rússia, St. Petersburg

A. Lyubina

Federal Research Center “Kazan Scientific Center of Russian Academy of Sciences”

Email: milya1949@mail.ru

Arbuzov Institute of Organic and Physical Chemistry

Rússia, Kazan

A. Voloshina

Federal Research Center “Kazan Scientific Center of Russian Academy of Sciences”

Email: milya1949@mail.ru

Arbuzov Institute of Organic and Physical Chemistry

Rússia, Kazan

E. Musina

Federal Research Center “Kazan Scientific Center of Russian Academy of Sciences”

Email: milya1949@mail.ru

Arbuzov Institute of Organic and Physical Chemistry

Rússia, Kazan

A. Karasik

Federal Research Center “Kazan Scientific Center of Russian Academy of Sciences”

Email: milya1949@mail.ru

Arbuzov Institute of Organic and Physical Chemistry

Rússia, Kazan

Bibliografia

  1. Williams J.A.G., Develay S., Rochester D.L. et al. // Coord. Chem. Rev. 2008. V. 252. P. 2596.
  2. Qi L., Luo Q., Zhang Y. et al. // Chem. Res. Toxicol. 2019. V. 32. P.1469.
  3. Galanski M.S., Keppler B.K. // Anticancer Agents Med. Chem. 2007. V. 7. P. 55.
  4. Kostova I. // Recent Patents Anticancer Drug Discov. 2006. V. 1. P.1.
  5. Yamaguchi Y., Ding W., Sanderson C.T. et al. // Coord. Chem. Rev. 2007. V. 251. P. 515.
  6. Wong K.M.-C., Yam V.W.-W. // Coord. Chem. Rev. 2007. V. 251. P. 2477.
  7. Augustyn K.E., Stemp E.D.A., Barton J.K. // Inorg. Chem. 2007. V. 46. P. 9337.
  8. Forrest S.R., Thompson M.E. // Chem. Rev. 2007. V. 107. P. 923.
  9. Zhao Q., Li F., Huang C. // Chem. Soc. Rev. 2010. V. 39. P. 3007.
  10. Zhao J., Ji S., Wu W. et al. // RSC Adv. 2012. V. 2. P. 1712.
  11. Mauro M., Aliprandi A., Septiadi D. et al. // Chem. Soc. Rev. 2014. V. 43. P. 4144.
  12. Garner K.L., Parkes L.F., Piper J.D. et al. // Inorg. Chem. 2010. V. 49. P. 476.
  13. Pittkowski R., Strassner T. // Beilstein J. Org. Chem. 2018. V. 14. P. 664.
  14. Kirlikovali K.O., Axtell J.C., Anderson K. et al. // Organometallics. 2018. V. 37. P. 3122.
  15. Brooks J., Babayan Y., Lamansky S. et al. // Inorg. Chem. 2002. V. 41. P. 3055.
  16. Shou R.-E., Chai W.-X., Song L. et al. // J. Cluster Sci. 2017. V. 28. P. 2185.
  17. Tseng C.-H., Fox M.A., Liao J.-L. et al. // J. Mater. Chem. C. 2017. V. 5. P. 1420.
  18. Yam V.W.-W., Law A.S.-Y. // Coord. Chem. Rev. 2020. V. 414. P. 213.
  19. Cebrián C., Mauro M. // Beilstein J. Org. Chem. 2018. V. 14. P. 1459.
  20. Yam V.W.-W., Chan K.H.-Y., Wong K.M.-C. et al. // Angew. Chem. Int. Ed. 2006. V. 45. P. 6169.
  21. Zhang Z.-H., Liu J., Wan L.-Q. et al. // Dalton Trans. 2015. V. 44. P. 7785.
  22. Williams J.A.G., Beeby A., Davies E.S. et al. // Inorg. Chem. 2003. V. 42. P. 8609.
  23. Hebenbrock M., González-Abradelo D., Strassert C.A. et al. // Z. Anorg. Allg. Chem. 2008. V. 644. P. 671.
  24. Imoto H., Tanaka S., Kato N. et al. // Organometallics. 2016. V. 35. P. 364.
  25. Galimova M.F., Begaliev T.A., Zueva E.M. et al. // Inorg. Chem. 2021. V. 60. № 9. P. 6804.
  26. Lachachi M.B., Benabdallah T., Aguiar P.M. et al. // Dalton Trans. 2015. V. 44. P. 11919.
  27. Гаврилов В.И., Гаврилова Г.Р., Хлебников В.Н. и др. // Изв. вузов. Сер. Химия и хим. технология. 1973. T. 12. № 10. C. 1602.
  28. Adamo C., Barone V. // J. Chem. Phys. 1999. V. 110. P. 6158.
  29. Dolg M., Wedig U., Stoll, H. et al. // J. Chem. Phys. 1987. V. 86. P. 866.
  30. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 03. Revision B.04. Pittsburgh (PA): Gaussian Inc., 2003
  31. Sheldrick G.M. SADABS. Program for Empirical X-ray Absorption Correction. Bruker-Nonius, 1990–2004.
  32. Altomare A., Cascarano G., Giacovazzo C. et al. // Acta Crystallogr. A. 1991. V. 47. P. 744.
  33. Sheldrick G. SHELX-97: Programs for Сrystal Structure Analysis. Göttingen (Germany): Göttingen University, 1997.
  34. Farrugia L.J. // J. Appl. Crystallogr. 1999. V. 32. P. 837.
  35. APEX2 (version 2.1). SAINTPlus. Data Reduction and Correction Program (version 7.31A). Madison (WI, USA): Bruker Advansed X-ray Solutions, BrukerAXS Inc., 2006.
  36. Voloshina A.D., Semenov V.E., Strobykina A.S. et al. // Russ. J. Bioorg. 2017. V. 43. P. 170.
  37. Dub P.A., Filippov O.A., Belkova N.V. et al. // J. Phys.Chem. A. 2009. V. 113. P. 6348.
  38. Moldovan N., Lönnecke P., Silaghi-Dumitrescu I. et al. // Inorg. Chem. 2008. V. 47. P. 1524.
  39. Imoto H., Sasaki H., Tanaka S. et al. // Organometallics. 2017. V. 36. P. 2605.
  40. Galimova M.F., Burdina K.A., Dobrynin A.B. et al. // Inorg. Chim. Acta. 2024. V. 563. P. 121896.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Additional Materials
Baixar (3MB)
3. Scheme 1.

Baixar (78KB)
4. Scheme 2. Synthesis of platinum(II) dibromide complexes based on 10-(aryl)phenoxarsines.

Baixar (110KB)
5. Fig. 1. Molecular structure of the cis-IV complex. Thermal ellipsoids are shown with a probability of 50%. Hydrogen atoms and the solvent molecule are not shown to simplify the figure.

Baixar (109KB)
6. Fig. 2. Molecular structure of the complex of cis-II (a) and trans-II (b). Thermal ellipsoids are shown with a probability of 50%. Hydrogen atoms and the solvent molecule (in the case of cis-II) are not shown to simplify the figure.

Baixar (213KB)
7. Fig. 3. Theoretical powder diffraction pattern (black line) calculated according to the structure of the trans-II complex and the experimental powder diffraction pattern (red line).

Baixar (163KB)
8. Fig. 4. 1H NMR spectra of complexes I–IV in CD2Cl2 at T = 303 K.

Baixar (435KB)
9. Fig. 5. Schematic representation of the structure of the main isomers: trans (a) and cis (b).

Baixar (543KB)
10. Fig. 6. Excitation (dash-dotted line) and emission (solid line) spectra of the trans-II complex in the solid state at room temperature.

Baixar (39KB)

Declaração de direitos autorais © Российская академия наук, 2025