Thermodynamic Evaluation of Syngas Production by High-Temperature Conversion of Waste Oil

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Thermodynamic evaluation of syngas production by high-temperature conversion of waste oil was performed using the Gibbs free energy minimization method. Optimum conditions for maximum hydrogen production while minimizing coke formation were determined. Equilibrium calculations were performed at atmospheric pressure with varying fuel excess ratio and water vapor amount. The results show that the optimal conditions for air-steam conversion of waste oil are: fuel excess ratio equal to 3.5 and molar ratio of water vapor to oxygen equal to 0.2. Under these conditions, coke formation does not occur, and hydrogen and carbon monoxide concentrations equal 27.5% and 28.4%, respectively.

Texto integral

Acesso é fechado

Sobre autores

M. Tsvetkov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: tsvetkovmv@gmail.com
Rússia, Chernogolovka

D. Podlesny

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: tsvetkovmv@gmail.com
Rússia, Chernogolovka

Yu. Tsvetkova

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: tsvetkovmv@gmail.com
Rússia, Chernogolovka

M. Salganskaya

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: tsvetkovmv@gmail.com
Rússia, Chernogolovka

A. Zaychenko

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: tsvetkovmv@gmail.com
Rússia, Chernogolovka

V. Kislov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: tsvetkovmv@gmail.com
Rússia, Chernogolovka

E. Salgansky

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: tsvetkovmv@gmail.com
Rússia, Chernogolovka

Bibliografia

  1. Holechek J.L., Geli H.M., Sawalhah M.N., Valdez R. // Sustainability. 2022. V. 14. № 8. P. 4792. https://doi.org/10.3390/su14084792
  2. Tereza A.M., Agafonov G.L., Anderzhanov E.K. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 1294. https://doi.org/10.1134/S1990793123060246
  3. Aseeva R.M., Kruglov E.Y., Kobelev A.A. et al. // Russ. J. Phys. Chem. B. 2024. V. 18. P. 707. https://doi.org/10.1134/S1990793124700076
  4. Kalak T. // Energies. 2023. V. 16. № 4. P. 1783; https://doi.org/10.3390/en16041783
  5. Dorofeenko S., Podlesniy D., Polianczyk E. et al. // Energies. 2024. V. 17. № 23. P. 6093. https://doi.org/10.3390/en17236093
  6. Li H., Feng Z., Ahmed A.T. et al. // J. Clean. Prod. 2022. V. 334. P. 130230. https://doi.org/10.1016/j.jclepro.2021.130230
  7. Singhabhandhu A., Tezuka T. // Energy. 2010. V. 35. № 6. P. 2544. https://doi.org/10.1016/j.energy.2010.03.001
  8. Wang Y., Yang Q., Ke L. et al. // Fuel. 2021. V. 283. 119170. https://doi.org/10.1016/j.fuel.2020.119170
  9. Lam S.S., Liew R.K., Jusoh A. et al. // Renew. Sustain. Energy Rev. 2016. V. 53. P. 741. https://doi.org/10.1016/j.rser.2015.09.005
  10. Su G., Ong H.C., Mofijur M., Mahlia T.I., Ok Y.S. // J. Hazard. Mater. 2022. V. 424. P. 127396. https://doi.org/10.1016/j.jhazmat.2021.127396
  11. Mittelbach M. // Eur. J. Lipid Sci. Technol. 2015. V. 117. № 11. P. 1832. https://doi.org/10.1002/ejlt.201500125
  12. Widodo S., Ariono D., Khoiruddin K., Hakim A.N., Wenten I.G. // Environ. Prog. Sustain. Energy. 2018. V. 37. № 6. P. 1867. https://doi.org/10.1002/ep.13011
  13. Zhao N., Li B., Chen D. et al. // Waste Manage. 2020. V. 104. P. 20. https://doi.org/10.1016/j.wasman.2020.01.007
  14. Akhmetshin M.R., Nyashina G.S., Romanov D.S. // Chem. Petrol. Eng. 2021.V. 56. № 9. P. 846. https://doi.org/10.1007/s10556-021-00851-x
  15. Chen C.Y., Lee W.J., Mwangi J.K. et al. // Aerosol and Air Qual. Res. 2017. V. 17. № 3. P. 899. https://doi.org/10.4209/aaqr.2016.09.0394
  16. Kislov V.M., Tsvetkov M.V., Zaichenko A.Y. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 947. https://doi.org/10.1134/S1990793123040255
  17. Krishenik P.M., Kostin S.V., Rogachev S.A. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 1123. https://doi.org/10.1134/S1990793123050044
  18. Kislov V.M., Tsvetkova Yu.Yu., Tsvetkov M.V. et al. // Combust., Explos. Shock Waves. 2023. V. 59. № 2. P. 83. https://doi.org/10.15372/FGV20230210
  19. Toledo M., Arriagada A., Ripoll N., Salgansky E.A., Mujeebu M.A. // Renew. Sustain. Energy Rev. 2023. V. 177. 113213. https://doi.org/10.1016/j.rser.2023.113213
  20. Salgansky E.A., Tsvetkov M.V., Tsvetkova Y.Y. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 1085. https://doi.org/10.1134/S1990793122060100
  21. Polianczyk E., Tarasov G., Zaichenko A. // E3S Web Conf. 2024. V. 474. 01013. https://doi.org/10.1051/e3sconf/202447401013
  22. Tsvetkova Y.Y., Kislov V.M., Pilipenko E.N., Salganskaya M.V., Tsvetkov M.V. // Russ. J. Phys. Chem. B. 2024. V. 18. № 4. P. 980. https://doi.org/10.1134/S199079312470043X
  23. Arriagada A., Mena R., Ripoll N. et al. // Chem. Eng. J. 2024. V. 495. 153011. https://doi.org/10.1016/j.cej.2024.153011
  24. Kislov V.M., Tsvetkova Y.Y., Pilipenko E.N. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 2. P. 374. https://doi.org/10.1134/S1990793123020070
  25. Kislov V.M., Glazov S.V., Salgansky E.A., Kolesnikova Yu.Yu., Salganskaya M.V. // Combust. Explos. Shock Waves. 2016. V. 52. № 3. P. 320. https://doi.org/10.1134/S0010508216030102
  26. Salganskaya M.V., Glazov S.V., Salganskii E.A. et al. // Russ. J. Phys. Chem. B. 2008. V. 2. № 1. P. 71. https://doi.org/10.1134/S1990793108010119
  27. Rocha C., Soria M.A., Madeira L.M. // J. Energy Inst. 2019. V. 92. № 5. P. 1599. https://doi.org/10.1016/j.joei.2018.06.017
  28. Noureddine H., Nahla F., Zouhour K., Marie-Noëlle P. // Energy Convers. Manag. 2013. V. 70. P. 174. https://doi.org/10.1016/j.enconman.2013.03.009
  29. Xu J., Peng Z., Rong S. et al. // Fuel. 2021. V. 306. 121767. https://doi.org/10.1016/j.fuel.2021.121767
  30. Trusov B.G. // Proc. 14th Intern. Conf. on Chemical Thermodynamics. St. Petersburg: NIIKh SPbGU, 2002. P. 483.
  31. Chen Y., Tan H., Yan M. et al. // Sustain. Energy Technol. Assessments. 2024. V. 70. 103956. https://doi.org/10.1016/j.seta.2024.103956
  32. Udoetuk E.N., Olatunbosun B.E., Adepojua T.F., Mayen I.A., Babalola R. // S. Afr. J. Chem. Eng. 2018. V. 25. №. 1. P. 169. https://doi.org/10.1016/j.sajce.2018.05.002
  33. Li C., Sayaka I., Chisato F., Fujimoto K. // Appl. Catal. A: Gen. 2016. V. 509. P. 123. https://doi.org/10.1016/j.apcata.2015.10.028

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Dependences of volume fraction of obtained compounds (V) and adiabatic combustion temperature (T) on stoichiometric fuel excess ratio (φ) for air conversion of waste oil. Curves: 1 - H2, 2 - CO, 3 - H2O, 4 - CO2, 5 - temperature.

Baixar (394KB)
3. Fig. 2. Dependences of mole fraction of obtained compounds (V) on temperature (T) at φ = 3.5 for air conversion of waste oil. Curves: 1 - H2, 2 - CO, 3 - H2O, 4 - CO2, 5 - C (vol.).

Baixar (388KB)
4. Fig. 3. Dependences of mole fraction of products (V) and adiabatic combustion temperature (T) on [H2O]/[O2] ratio at φ = 3.5 for vapour-air conversion of waste oil. Curves: 1 - H2, 2 - CO, 3 - H2O, 4 - CO2, 5 - temperature, 6 - C (vol.).

Baixar (431KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025