Динамика разрушения композиций полилактид–натуральный каучук под действием УФ-излучения

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В работе изучено влияние ультрафиолетового излучения (УФ) различной длины волны (λ = 254 и 365 нм) на композиции на основе полилактида с добавлением натурального каучука. Установлено, что влияние УФ с λ = 254 нм на исследуемые образцы гораздо активнее, чем УФ с λ = 365 нм, что характеризуется снижением температуры плавления и степени кристалличности полилактида в композициях, а также ухудшением физико-механических свойств. Методом ИК-спектроскопии подтверждено, что процесс фотодеструкции протекает с изменением интенсивностей структурно-чувствительных полос полилактида и натурального каучука.

Полный текст

Доступ закрыт

Об авторах

М. В. Подзорова

Институт биохимической физики им. Н.М. Эмануэля Российской академии наук; Российский экономический университет им. Г.В. Плеханова

Автор, ответственный за переписку.
Email: mariapdz@mail.ru
Россия, Москва; Москва

Ю. В. Тертышная

Институт биохимической физики им. Н.М. Эмануэля Российской академии наук; Российский экономический университет им. Г.В. Плеханова

Email: mariapdz@mail.ru
Россия, Москва; Москва

Список литературы

  1. Ates B., Koytepe S., Ulu A., Gurs-es C., Thakur V.K. // Chem. Rev. 2020. V. 120. № 17. Р. 9304; https://doi.org/10.1021/acs.chemrev.9b00553
  2. Hamad K., Kaseem M., Ayyoob M., Joo J., Deri F. // Prog. Polym. Sci. 2018. V. 85 P. 83; https://doi.org/10.1016/j.progpolymsci.2018.07.001
  3. Подзорова М.В., Тертышная Ю.В. // ЖПХ. 2019. Т. 92. № 6. С. 737; https://doi.org/10.1134/S0044461819060069
  4. Тертышная Ю.В., Шибряева Л.С., Левина Н.С. // Хим. волокна. 2020. №1. С. 40; https://doi.org/10.1007/s10692-020-10148-z
  5. Попов А.А., Зыкова А.К., Масталыгина Е.Е. // Хим. физика B. 2020. Т. 39. № 6. P. 71; https://doi.org/10.31857/S0207401X20060096
  6. Li Y., Qiu Sh., Sun J. et al. // Chem. Eng. J. 2022. V. 428. P. 131979. https://doi.org/10.1016/j.cej.2021.131979
  7. Yeo J.C.C., Muiruri J.K., Koh J.J. et al. // Adv. Funct. Mater. 2020. V. 30. № 30. Р. 2001565; https://doi.org/10.1002/adfm.v30.3010.1002/adfm.202001
  8. Тертышная Ю.В., Карпова С.Г., Попов А.А. // Хим. физика B. 2017. Т. 36. № 6. P. 84; https://doi.org/ 10.7868/S0207401X17060140
  9. Huang Y., Zhang C., Pan Y., et al. // Polym. Degrad. Stab. 2013. V. 9. P. 943; https://doi.org/10.1016/j.polymdegradstab.2013.02.018
  10. Тертышная Ю.В., Хватов А.В., Попов А.А. // Хим. физика B. 2022. Т. 41. № 2. P. 86; https://doi.org/10.31857/S0207401X22020133
  11. Olewnik-Kruszkowska E., Koter I., Skopin-ska-Wisniewskab J., Richert J. // J. Photochem. Photobiol. A: Chem. 2015. № 311. P. 144. https://doi.org/10.1016/j.jphotochem.2015.06.029
  12. Подзорова М.В., Тертышная Ю.В. //Хим. физика. 2020. Т. 39. № 1. С. 57; https://doi.org/10.31857/S0207401X20010173
  13. Ikada E. // J. Photopolym. Sci. Technol. 1997. V. 10. P. 265.
  14. Tsuji H., Echizen Y., Nishimura Y. // Polym. Degrad. Stab. 2006. V. 91. Is. 5. P. 1128; https://doi.org/10.1016/j.polymdegradstab.2005.07.007
  15. Marek A.A., Verney V. // Eur. Polym. J. 2016. V. 81. P. 239.
  16. Bao Q., Wong W., Liu S., Tao X. // Polymers. 2022. V. 14. P. 1216; https://doi.org/10.3390/polym14061216
  17. Kaynak C., Sarı B. // Appl. Clay Sci. 2016. V. 121–122. P. 86; https://doi.org/10.1016/j.clay.2015.12.025
  18. Janorkar A.V., Metters A.T., Hirt D.E. // J. Appl. Polym. Sci. 2007. V. 106. P. 1042; https://doi.org/10.1002/app.24692
  19. Lim L.-T., Auras R., Rubino M. // Prog. Polym. Sci. 2008. V. 33. P. 820; https://doi.org/10.1016/j.progpolymsci.2008.05.004
  20. Li S., McCarthy S. // Macromolecules. 1999. V. 32. P. 4454; https://doi.org/10.1021/ma990117b.
  21. Jeon H.J., Kim M.N. // Intern. Biodeterior. Biodegrad. 2013. V. 85. P. 289; https://doi.org/10.1016/j.ibiod.2013.08.013
  22. Pan F., Chen L., Jiang Y.et al. // Intern. J. Biol. Macromol. 2018. V.119. P. 582; https://doi.org/10.1016/j.ijbiomac.2018.07.189
  23. Bocchini S., Fukushima K., Di Blasio A., Fina A., Geobaldo F.F. // Biomacromolecules. 2010. V. 11. P. 2919; https://doi.org/10.1021/bm1006773
  24. Tertyshnaya Y., Podzorova M., Moskovskiy M. // Polymers. 2021. V. 13. P. 461; https://doi.org/10.3390/polym13030461
  25. Moura I., Botelho G., Machado A.V. // J. Polym. Environ. 2014. V. 22. P. 148; https://doi.org/10.1007/s10924-013-0614-y
  26. Zhang C., Man C., Wang W., Jiang L., Dan Y. // Polym. Plast. Technol. 2011. V. 50. P. 810; https://doi.org/10.1080/03602559.2011.551970
  27. Yang W., Dominici F., Fortunati E., Kenny J.M., Puglia D. // Ind. Crop. Prod. 2015. V. 77. P. 833; https://doi.org/10.1016/j.indcrop.2015.09.057

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Схема деструкции полилактида под воздействием ультрафиолетового излучения.

Скачать (57KB)
3. Рис. 2. Изменение тактических характеристик (прочность при разрыве (а) и относительное удлинение (б)) образцов ПЛА/НК до (1) и после (2) воздействия УФ-излучения c λ = 365 нм в течение 300 ч.

Скачать (184KB)
4. Рис. 3. ИК-спектры (МНПВО) образца 85ПЛА/15НК до (1) и после (2) воздействия УФ-излучения с λ = 254 нм в течение 100 ч.

Скачать (106KB)
5. Рис. 4. ИК-спектры (МНПВО) образца 85ПЛА/15НК до (1) и после (2) воздействия УФ-излучения c λ = 365 нм в течение 300 ч.

Скачать (113KB)
6. Рис. 5. Микрофотографии образца 85ПЛА/15НК до (а) и после (б) воздействия УФ-излучения с λ = 254 нм) в течение 100 ч.

Скачать (288KB)

© Российская академия наук, 2024