Influence of different heat treatment regimes on the change of chemical composition and antibacterial activity of bee honey

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The studies of the chemical composition and antibacterial activity of heather honey (Calluna vulgaris) subjected to heat treatment at 35–40°C for 12 hours were carried out. The temperature range (38–40°C), at which decrease in the H2O2 concentration, decrease in D-glucose-1-oxidase activity and increase in the 5-hydroxymethylfurfural content, was identified. The degree of chemical changes was directly proportional to the temperature and time of thermal exposure. The correlation between changes in the chemical composition and antibacterial activity of honey against test microorganisms Escherichia coli (strain 1257), Staphylococcus aureus (strain 209-P) and Bacillus cereus (strain 96) was established. The obtained results showed that heating honey to 37 °C even for 12 hours didn’t cause undesirable changes in its chemical composition and decrease in antibacterial activity. Thus, this temperature regime can be considered more gentle and recommended for use in the heat treatment of this food product.

全文:

受限制的访问

作者简介

D. Gruznov

Federal Research Center All-Russian Research Institute for Experimental Veterinary Science Russian Academy of Sciences

编辑信件的主要联系方式.
Email: 79164422245@yandex.ru

All-Russian Research Institute for Veterinary Sanitation, Hygiene and Ecology

俄罗斯联邦, Moscow

O. Gruznova

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: 79164422245@yandex.ru
俄罗斯联邦, Moscow

A. Lobanov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Moscow Pedagogical State University; Plekhanov Russian University of Economics

Email: 79164422245@yandex.ru
俄罗斯联邦, Moscow; Moscow; Moscow

A. Sokhlikov

Federal Research Center All-Russian Research Institute for Experimental Veterinary Science Russian Academy of Sciences

Email: 79164422245@yandex.ru

All-Russian Research Institute for Veterinary Sanitation, Hygiene and Ecology

俄罗斯联邦, Moscow

G. Shcherbakova

Federal Research Center All-Russian Research Institute for Experimental Veterinary Science Russian Academy of Sciences

Email: 79164422245@yandex.ru

All-Russian Research Institute for Veterinary Sanitation, Hygiene and Ecology

俄罗斯联邦, Moscow

S. Stepanova

Federal Research Center All-Russian Research Institute for Experimental Veterinary Science Russian Academy of Sciences

Email: 79164422245@yandex.ru

All-Russian Research Institute for Veterinary Sanitation, Hygiene and Ecology

俄罗斯联邦, Moscow

N. Popov

Federal Research Center All-Russian Research Institute for Experimental Veterinary Science Russian Academy of Sciences

Email: 79164422245@yandex.ru

All-Russian Research Institute for Veterinary Sanitation, Hygiene and Ecology

俄罗斯联邦, Moscow

参考

  1. Villacres-Granda I., Proano A., Coello D. et al. // Food Chem. 2021. V. 365. № 15. P. 130519; https://doi.org/10.1016/j.foodchem.2021.130519
  2. Cagliani L.R., Maestri G., Consonni R. // Food Contr. 2022. V. 133. P. 108574; https://doi.org/10.1016/J.FOODCONT.2021.108574
  3. Seraglio S.K.T., Schulz M., Brugnerotto P. et al. // Food Res. Intern. 2021. V. 143. P. 110268; https://doi.org/10.1016/J.FOODRES.2021.110268
  4. Zaikina V.I. Ekspertiza meda i sposoby obnaruzheniya yego fal’sifi katsii. M:. Izdatel’skiy dom “Dashkov i Ko”, 2012.
  5. Komlatsky V.I., Plotnikov S.A. // Pchelovodstvo. 2006. V. 2. P. 54.
  6. Cherevko Yu.A., Nosovitsky P.B. // Pchelovodstvo. 2000. V. 3. P. 39.
  7. Doner L.W. // J. Sci. Food Agric. 1977. V. 28. P. 443.
  8. Bogdanov S. // Lebensmittel-Wissenschaft und Technologie. 1984. V. 17. P. 74.
  9. Almasaudi S. // Saudi J. Biol. Sci. 2021. V. 28. № 4. P. 2188; https://doi.org/10.1016/j.sjbs.2020.10.017
  10. White J.W., Subers M.H., Schepartz A.I. // Biochim. Biophys. Acta. 1963. V. 7. № 73. P. 57.
  11. Kwakman P.H.S., te Velde A.A., de Boer L. et al. // PLoS One. 2011. V. 6. № 3. P. 1; https://doi.org/10.1371/journal.pone.0017709
  12. Lehmann D.M., Krishnakumar K., Batres M.A. et al. // Access Microbiol. 2019. V. 1. № 10. P. 1; https://doi.org/10.1099/acmi.0.000065
  13. Alygizou A., Grigorakis S., Gotsiou P. et al. // J. Anal. Meth. Chem. 2021. V. 2021. P. 5554305; https://doi.org/10.1155/2021/5554305
  14. Wohlfart G., Witt S., Hendle J. et al. // Acta Cryst., Sect. D: Biol. Crystallogr. 1999. V. 55. P. 969; https://doi.org/10.1107/s0907444999003431
  15. Jones P., Dunford H.B. // J. Theoretical Biol. 1977. V. 69. P. 457.
  16. Brudzynski K. // Food Chem. 2020. V. 1. № 332. P. 127229; https://doi.org/10.1016/j.foodchem.2020.127229
  17. Zamocky M., Gasselhuber B., Furtmuller P.G. et al. // Arch. Biochem. Biophys. 2012. V. 525. № 2. P. 131; https://doi.org/10.1016/j.abb.2012.01.017
  18. Chen C., Campbell L.T., Blair Sh.E. et al. // Front. Microbiol. 2012. V. 3. P. 265; https://doi.org/10.3389/fmicb.2012.00265
  19. Besir A., Yazici F., Mortas M. et al. // LWT — Food Sci. Tech. 2021. V. 139. P. 110602; https://doi.org/10.1016/j.lwt.2020.110602
  20. Fang G.Z., Lv Y.Y., Sheng W. et al. // Anal. Bioanal. Chem. 2011. V. 401. № 10. P. 3367; https://doi.org/10.1007/s00216-011-5430-4
  21. Yarova O.A., Lobanov A.V. // RZh “Problemy veterinarnoy sanitarii, gigiyeny i ekologii”. 2012. V. 2. P. 12.
  22. Yarova O.A., Sokhlikov A.B., Lobanov A.V. // Vestnik RASKHN. 2012. V. 6. P. 51.
  23. GOST (State Standard) 19792-2017. Natural honey. Specifications.
  24. GOST (State Standard) 31769-2012. Honey. Determination of the relative frequency of pollen.
  25. Lobanov A.V., Rubtsova N.A., Vedeneeva Yu.A. et al. // Dokl. Chem. 2008. V. 421. P. 190.
  26. GOST (State Standard) 32167-2013. Honey. Method for determination of sugars.
  27. GOST (State Standard) 31768-2012. Natural honey. Methods for determination of hydroxymethylfurfural.
  28. Aganin A.V. Med i yego issledovaniye. Saratov: Izdatel’stvo Saratovskogo universiteta, 1985.
  29. GOST (State Standard) 34232-2017. Honey. Methods for determination of sucrose activity, diastase activity, insoluble matters.
  30. Flanjak I., Strelec I., Kenjerić D. et al. // J. Apicult. Sci. 2015. V. 60. № 1. P. 39; https://doi.org/10.1515/jas-2016-0005
  31. Burmistrov A.N., Nikitina V.A. Medonosnyye rasteniya i ikh pyl’tsa: Spravochnik. M.: Rosagropromizdat, 1990.
  32. Kasiotis K.M., Baira E., Iosifi dou S. et al. // Front. Chem. 2022. V. 10. P. 924881; https://doi.org/10.3389/fchem.2022.924881
  33. Lehebel-Peron A., Sidawy P., Dounias E. et al. // J. Rur. Stud. 2016. V. 44. P. 132; https://doi.org/10.1016/j.jrurstud.2016.01.005
  34. Andrade P.B., Amaral M.T., Isabel P. et al. // Food Chem. 1999. V. 66. № 4. P. 503; https://doi.org/10.1016/S0308-8146(99)00100-4
  35. Yarova O.A., Lobanov А.V. // Problemy veteri narnoy sanitarii, gigiyeny i ekologii. 2012. V. 1. P. 1.
  36. Bucekova M., Juricova V., Monton E. et al. // Food Chem. 2018. V. 240. P. 1131; https://doi.org/10.1016/j.foodchem.2017.08.054
  37. Krupyanskii Y. F. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 326. https://doi.org/10.1134/S199079312102007X
  38. Tereshkin E.V., Loiko N.G., Tereshkina K.B. et al. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 1026. https://doi.org/10.1134/S1990793121060099
  39. Krupyanskii Y.F., Generalova A.A., Kovalenko V.V. et al. // Russ. J. Phys. Chem. B. 2023. V. 42. P. 3.
  40. Tereshkin E.V., Tereshkina K.B., Loiko N.G. et al. // Russ. J. Phys. Chem. B. 2023. V. 42. P. 30.
  41. Tertyshnaya Y.V., Khvatov A.V., Lobanov A.V. // Russ. J. Phys. Chem. B. 2020. V. 14. P. 1022. https://doi.org/10.1134/S1990793120060135
  42. Kluytmans J., van Belkum A., Verbrugh H. // Microbiol. Mol. Biol. Rev. 1997. V. 10(3). P. 505.
  43. Rahnama H., Azari R., Yousefi M.H. et al. // Food Contr. 2022. V. 143. P. 109250; https://doi.org/10.1016/j.foodcont.2022.109250
  44. Matienko L.I., Mil E.M., Binyukov V.I. // Russ. J. Phys. Chem. B. 2020. V. 14. P. 559. https://doi.org/10.1134/S1990793120030227
  45. Karbyshev M.S., Abdullaev Sh.P. Biokhimiya oksidativnogo stressa: Uchebno-metodicheskoye posobiye. M.: RNIMU im. N. I. Pirogova Minzdrava Rossii, 2018.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Photographic image of a pollen grain of Common Heather - Calluna vulgaris (×400).

下载 (197KB)
3. Fig. 2. Electronic absorption spectra of the complex anion I3– (λmax = 351 nm) in heather honey samples 1–20.

下载 (64KB)
4. Fig. 3. Changes in the chemical composition of heather honey samples: H2O2 concentration (a), 5-HMF concentration (b), glucose content (c), sucrose content (d), fructose content (e), catalase activity (f), diastase activity ( g), D-glucose-1-oxidase activity (h) without thermal exposure - control (untreated honey) (1), and when exposed for 12 hours to temperatures of 35 °C (2), 36 °C (3), 37 °C (4), 38 °C (5), 39 °C (6), 40 °C (7).

下载 (357KB)
5. Fig. 4. Inhibition of the growth of bacteria E. coli (), S. aureus () and B. cereus () when exposed to unprocessed (unprocessed honey) and heat-treated honey for 3 hours in the temperature range of 35–40 ° C.

下载 (81KB)

版权所有 © Russian Academy of Sciences, 2024