Ингибирование этопозид-индуцированного повреждения ДНК у клеток острого моноцитарного лейкоза в условиях гиперклеточного провоспалительного микроокружения
- Авторы: Кобякова М.И.1, Краснов К.С.1,2, Крестинина О.В.1, Бабурина Ю.Л.1, Сенотов А.С.1, Ломовская Я.В.1, Мещерякова Е.И.1,3, Ломовский А.И.1, Звягина А.И.1, Пятина К.В.1, Фадеева И.С.1, Фадеев Р.С.1
-
Учреждения:
- Институт теоретической и экспериментальной биофизики РАН
- Институт цитологии и генетики СО РАН, Научно-исследовательский институт клинической и экспериментальной лимфологии
- Институт биофизики клетки РАН
- Выпуск: Том 90, № 5 (2025)
- Страницы: 595-610
- Раздел: Статьи
- URL: https://ta-journal.ru/0320-9725/article/view/686444
- DOI: https://doi.org/10.31857/S0320972525050015
- EDN: https://elibrary.ru/IRLFVW
- ID: 686444
Цитировать
Аннотация
Возникновение устойчивости у клеток острого моноцитарного лейкоза (ОМоЛ; ОМЛ М5) к действию противоопухолевых агентов является одной из основных причин крайне низкой выживаемости и излечиваемости пациентов с диагностированным ОМоЛ. Хорошо известно, что клетки ОМЛ обладают «воспалительным» фенотипом и формируют уникальное провоспалительное микроокружение. Ранее мы выявили повышение устойчивости клеток ОМоЛ человека ТНР-1 к действию ингибиторов ДНК-топоизомераз I и II (топотекан, этопозид, доксорубицин) в in vitro модели, имитирующей условия провоспалительного микроокружения – трехмерной долговременной культуре клеток высокой плотности. В данном исследовании с помощью методов флуоресцентной микроскопии и спектрофлуориметрии, метода ДНК-комет, вестерн-блоттинга, анализа дифференциальной экспрессии генов и проточной цитометрии мы показали, что повышение резистентности к действию ингибиторов ДНК-топоизомераз, в частности к этопозиду, у клеток ОМоЛ ТНР-1 в условиях гиперклеточного провоспалительного микроокружения реализуется за счет снижения одно- и двухцепочечных разрывов ДНК и, соответственно, ответа на повреждение ДНК, а также может быть связано с выраженной активацией сигнальных путей интерферонов I и II типов, NF-κB/STAT-зависимых сигнальных путей, происходящей на фоне существенного подавления активности транскрипционных факторов семейств Myc и E2F. Результаты этой работы открывают новые представления о роли провоспалительной активации в повышении устойчивости клеток ОМЛ к гибели, индуцированной действием ингибиторов ДНК-топоизомераз.
Ключевые слова
Полный текст

Об авторах
М. И. Кобякова
Институт теоретической и экспериментальной биофизики РАН
Автор, ответственный за переписку.
Email: kobyakovami@gmail.com
Россия, 142290 Пущино, Московская обл.
К. С. Краснов
Институт теоретической и экспериментальной биофизики РАН; Институт цитологии и генетики СО РАН, Научно-исследовательский институт клинической и экспериментальной лимфологии
Email: kobyakovami@gmail.com
Россия, 142290 Пущино, Московская обл.; 630060 Новосибирск
О. В. Крестинина
Институт теоретической и экспериментальной биофизики РАН
Email: kobyakovami@gmail.com
Россия, 142290 Пущино, Московская обл.
Ю. Л. Бабурина
Институт теоретической и экспериментальной биофизики РАН
Email: kobyakovami@gmail.com
Россия, 142290 Пущино, Московская обл.
А. С. Сенотов
Институт теоретической и экспериментальной биофизики РАН
Email: kobyakovami@gmail.com
Россия, 142290 Пущино, Московская обл.
Я. В. Ломовская
Институт теоретической и экспериментальной биофизики РАН
Email: kobyakovami@gmail.com
Россия, 142290 Пущино, Московская обл.
Е. И. Мещерякова
Институт теоретической и экспериментальной биофизики РАН; Институт биофизики клетки РАН
Email: kobyakovami@gmail.com
Россия, 142290 Пущино, Московская обл.; 142290 Пущино, Московская обл.
А. И. Ломовский
Институт теоретической и экспериментальной биофизики РАН
Email: kobyakovami@gmail.com
Россия, 142290 Пущино, Московская обл.
А. И. Звягина
Институт теоретической и экспериментальной биофизики РАН
Email: kobyakovami@gmail.com
Россия, 142290 Пущино, Московская обл.
К. В. Пятина
Институт теоретической и экспериментальной биофизики РАН
Email: kobyakovami@gmail.com
Россия, 142290 Пущино, Московская обл.
И. С. Фадеева
Институт теоретической и экспериментальной биофизики РАН
Email: kobyakovami@gmail.com
Россия, 142290 Пущино, Московская обл.
Р. С. Фадеев
Институт теоретической и экспериментальной биофизики РАН
Email: kobyakovami@gmail.com
Россия, 142290 Пущино, Московская обл.
Список литературы
- Zhang, R., Lee, J. Y., Wang, X., Xu, W., Hu, X., Lu, X., Niu, Y., Tang, R., Li, S., and Li, Y. (2014) Identification of novel genomic aberrations in AML-M5 in a level of array CGH, PLoS One, 9, e87637, https://doi.org/10.1371/journal.pone.0087637.
- Varotto, E., Munaretto, E., Stefanachi, F., Della Torre, F., and Buldini, B. (2022) Diagnostic challenges in acute monoblastic/monocytic leukemia in children, Front. Pediatr., 10, 911093, https://doi.org/10.3389/fped.2022.911093.
- Liu, L. P., Zhang, A. L., Ruan, M., Chang, L. X., Liu, F., Chen, X., Qi, B. Q., Zhang, L., Zou, Y., Chen, Y. M., Chen, X. J., Yang, W. Y., Guo, Y., and Zhu, X. F. (2020) Prognostic stratification of molecularly and clinically distinct subgroup in children with acute monocytic leukemia, Cancer Med., 9, 3647-3655, https://doi.org/10.1002/cam4.3023.
- Shimony, S., Stahl, M., and Stone, R. M. (2023) Acute myeloid leukemia: 2023 update on diagnosis, risk-stratification, and management, Am. J. Hematol., 98, 502-526, https://doi.org/10.1002/ajh.26822.
- Arwanih, E. Y., Louisa, M., Rinaldi, I., and Wanandi, S. I. (2022) Resistance mechanism of acute myeloid leukemia cells against daunorubicin and cytarabine: a literature review, Cureus, 14, e33165, https://doi.org/10.7759/cureus.33165.
- Ganesan, S., Mathews, V., and Vyas, N. (2022) Microenvironment and drug resistance in acute myeloid leukemia: do we know enough? Int. J. Cancer, 150, 1401-1411, https://doi.org/10.1002/ijc.33908.
- Bolandi, S. M., Pakjoo, M., Beigi, P., Kiani, M., Allahgholipour, A., Goudarzi, N., Khorashad, J. S., and Eiring, A. M. (2021) A role for the bone marrow microenvironment in drug resistance of acute myeloid leukemia, Cells, 10, 2833, https://doi.org/10.3390/cells10112833.
- Pourrajab, F., Zare-Khormizi, M. R., Hekmatimoghaddam, S., and Hashemi, A. S. (2020) Molecular targeting and rational chemotherapy in acute myeloid leukemia, J. Exp. Pharmacol., 12, 107-128, https://doi.org/10.2147/ JEP.S254334.
- Saultz, J. N., and Garzon, R. (2016) Acute myeloid leukemia: a concise review, J. Clin. Med., 5, 33, https://doi.org/10.3390/jcm503003.
- Zhang, W., Gou, P., Dupret, J. M., Chomienne, C., and Rodrigues-Lima, F. (2021) Etoposide, an anticancer drug involved in therapy-related secondary leukemia: enzymes at play, Transl. Oncol., 14, e101169, https://doi.org/10.1016/j.tranon.2021.101169.
- McKie, S. J., Neuman, K. C., and Maxwell, A. (2021) DNA topoisomerases: Advances in understanding of cellular roles and multi-protein complexes via structure-function analysis, Bioessays, 43, e2000286, https://doi.org/ 10.1002/bies.202000286.
- Liang, X., Wu, Q., Luan, S., Yin, Z., He, C., Yin, L., Zou, Y., Yuan, Z., Li, L., Song, X., He, M., Lv, C., and Zhang, W. (2019) A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade, Eur. J. Med. Chem., 171, 129-168, https://doi.org/10.1016/j.ejmech.2019.03.034.
- Tsuchiya, S., Yamabe, M., Yamaguchi, Y., Kobayashi, Y., Konno, T., and Tada, K. (1980) Establishment and characterization of a human acute monocytic leukemia cell line (THP-1), Int. J. Cancer, 26, 171-176, https://doi.org/10.1002/ijc.2910260208.
- Yu, F., Chen, Y., Zhou, M., Liu, L., Liu, B., Liu, J., Pan, T., Luo, Y., Zhang, X., Ou, H., Huang, W., Lv, X., Xi, Z., Xiao, R., Li, W., Cao, L., Ma, X., Zhang, J., Lu, L., and Zhang, H. (2024) Generation of a new therapeutic D-peptide that induces the differentiation of acute myeloid leukemia cells through A TLR-2 signaling pathway, Cell Death Discov., 10, 51, https://doi.org/10.1038/s41420-024-01822-w.
- Xie, C., Drenberg, C., Edwards, H., Caldwell, J. T., Chen, W., Inaba, H., Xu, X., Buck, S. A., Taub, J. W., Baker, S. D., and Ge, Y. (2013) Panobinostat enhances cytarabine and daunorubicin sensitivities in AML cells through suppressing the expression of BRCA1, CHK1, and Rad51, PLoS One, 8, e79106, https://doi.org/10.1371/journal.pone.0079106.
- Giri, B., Gupta, V. K., Yaffe, B., Modi, S., Roy, P., Sethi, V., Lavania, S. P., Vickers, S. M., Dudeja, V., Banerjee, S., Watts, J., and Saluja, A. (2019) Pre-clinical evaluation of Minnelide as a therapy for acute myeloid leukemia, J. Transl. Med., 17, 163, https://doi.org/10.1186/s12967-019-1901-8.
- Martino, V., Tonelli, R., Montemurro, L., Franzoni, M., Marino, F., Fazzina, R., and Pession, A. (2006) Down-regulation of MLL-AF9, MLL and MYC expression is not obligatory for monocyte-macrophage maturation in AML-M5 cell lines carrying t(9;11)(p22;q23), Oncol. Rep., 15, 207-211, https://doi.org/10.3892/or.15.1.207.
- Umeda, M., Ma, J., Westover, T., Ni, Y., Song, G., Maciaszek, J. L., Rusch, M., Rahbarinia, D., Foy, S., Huang, B. J., Walsh, M. P., Kumar, P., Liu, Y., Yang, W., Fan, Y., Wu, G., Baker, S. D., Ma, X., Wang, L., Alonzo, T. A., and Klco, J. M. (2024) A new genomic framework to categorize pediatric acute myeloid leukemia, Nat. Genet., 56, 281-293, https://doi.org/10.1038/s41588-023-01640-3.
- Drexler, H. G., Quentmeier, H., and MacLeod, R. A. (2004) Malignant hematopoietic cell lines: in vitro models for the study of MLL gene alterations, Leukemia, 18, 227-232, https://doi.org/10.1038/sj.leu.2403236.
- Pang, J. M., Chien, P. C., Kao, M. C., Chiu, P. Y., Chen, P. X., Hsu, Y. L., Liu, C., Liang, X., and Lin, K. T. (2023) MicroRNA-708 emerges as a potential candidate to target undruggable NRAS, PLoS One, 18, e0284744, https://doi.org/10.1371/journal.pone.0284744.
- Kasai, F., Hirayama, N., Fukushima, M., Kohara, A., and Nakamura, Y. (2022) THP-1 reference data: proposal of an in vitro branched evolution model for cancer cell lines, Int. J. Cancer, 151, 463-472, https://doi.org/10.1002/ijc.34019.
- Sano, H., Shimada, A., Taki, T., Murata, C., Park, M. J., Sotomatsu, M., Tabuchi, K., Tawa, A., Kobayashi, R., Horibe, K., Tsuchida, M., Hanada, R., Tsukimoto, I., and Hayashi, Y. (2012) RAS mutations are frequent in FAB type M4 and M5 of acute myeloid leukemia, and related to late relapse: a study of the Japanese Childhood AML Cooperative Study Group, Int. J. Hematol., 95, 509-515, https://doi.org/10.1007/s12185-012-1033-x.
- Laursen, A. C., Sandahl, J. D., Kjeldsen, E., Abrahamsson, J., Asdahl, P., Ha, S. Y., Heldrup, J., Jahnukainen, K., Jónsson, Ó. G., Lausen, B., Palle, J., Zeller, B., Forestier, E., and Hasle, H. (2016) Trisomy 8 in pediatric acute myeloid leukemia: A NOPHO-AML study, Genes Chromosomes Cancer, 55, 719-726, https://doi.org/10.1002/gcc.22373.
- Odero, M. D., Zeleznik-Le, N. J., Chinwalla, V., and Rowley, J. D. (2000) Cytogenetic and molecular analysis of the acute monocytic leukemia cell line THP-1 with an MLL-AF9 translocation, Genes Chromosomes Cancer, 29, 333-338, https://doi.org/10.1002/1098-2264(2000)9999:9999<::AID-GCC1040>3.0.CO;2-Z.
- Loghavi, S., Kanagal-Shamanna, R., Khoury, J. D., Medeiros, L. J., Naresh, K. N., Nejati, R., Patnaik, M. M., and WHO 5th Edition Classification Project (2024) Fifth Edition of the World Health Classification of tumors of the hematopoietic and lymphoid tissue: myeloid neoplasms, Mod. Pathol., 37, 100397, https://doi.org/10.1016/ j.modpat.2023.100397.
- Kobyakova, M., Lomovskaya, Y., Senotov, A., Lomovsky, A., Minaychev, V., Fadeeva, I., Shtatnova, D., Krasnov, K., Zvyagina, A., Odinokova, I., Akatov, V., and Fadeev, R. (2022) The increase in the drug resistance of acute myeloid leukemia THP-1 cells in high-density cell culture is associated with inflammatory-like activation and anti-apoptotic Bcl-2 proteins, Int. J. Mol. Sci., 23, 7881, https://doi.org/10.3390/ijms23147881.
- Kobyakova, M. I., Evstratova, Y. V., Senotov, A. S., Lomovsky, A. I., Minaichev, V. V., Zvyagina, A. I., Solovieva, M. E., Fadeeva, I. S., Akatov, V. S., and Fadeev, R. S. (2021) Appearance of signs of differentiation and pro-inflammatory phenotype in acute myeloid leukemia cells THP-1 with an increase in their TRAIL resistance in cell aggregates in vitro, Biochem. (Moscow) Suppl. Ser. Membr. Cell Biol., 15, 97-105, https://doi.org/10.1134/S1990747821010050.
- Lu, S., Li, Y., Zhu, C., Wang, W., and Zhou, Y. (2022) Managing cancer drug resistance from the perspective of inflammation, J. Oncol, 2022, 3426407, https://doi.org/10.1155/2022/3426407.
- Kidane, D., Chae, W. J., Czochor, J., Eckert, K. A., Glazer, P. M., Bothwell, A. L., and Sweasy, J. B. (2014) Interplay between DNA repair and inflammation, and the link to cancer, Crit. Rev. Biochem. Mol. Boil., 49, 116-139, https://doi.org/10.3109/10409238.2013.875514.
- Fontes, F. L., Pinheiro, D. M., Oliveira, A. H., Oliveira, R. K., Lajus, T. B., and Agnez-Lima, L. F. (2015) Role of DNA repair in host immune response and inflammation, Mutat. Res. Rev. Mutat. Res., 763, 246-257, https://doi.org/10.1016/j.mrrev.2014.11.004.
- Pazzaglia, S., and Pioli, C. (2019) Multifaceted role of PARP-1 in DNA repair and inflammation: pathological and therapeutic implications in cancer and non-cancer diseases, Cells, 9, 41, https://doi.org/10.3390/cells9010041.
- Kobyakova, M. I., Senotov, A. S., Krasnov, K. S., Lomovskaya, Y. V., Odinokova, I. V., Kolotova, A. A., Ermakov, A. M., Zvyagina, A. I., Fadeeva, I. S., Fetisova, E. I., Akatov, V. S., and Fadeev, R. S. (2024) Pro-Inflammatory activation suppresses TRAIL-induced apoptosis of acute myeloid leukemia cells, Biochemistry (Moscow), 89, 431-440, https://doi.org/10.1134/S0006297924030040.
- Kruger, N. J. (1994) The Bradford method for protein quantitation, Methods Mol. Boil., 32, 9-15, https://doi.org/10.1385/0-89603-268-X:9.
- Рылова Ю. В., Буравкова Л. Б. (2013) Постоянное культивирование мультипотентных мезенхимных стромальных клеток при пониженном содержании кислорода, Цитология, 55, 852-860.
- Lomovskaya, Y. V., Krasnov, K. S., Kobyakova, M. I., Kolotova, A. A., Ermakov, A. M., Senotov, A. S., Fadeeva, I. S., Fetisova, E. I., Lomovsky, A. I., Zvyagina, A. I., Akatov, V. S., and Fadeev, R. S. (2024) Studying signaling pathway activation in TRAIL-resistant macrophage-like acute myeloid leukemia cells, Acta Naturae, 16, 48-58, https://doi.org/10.32607/actanaturae.27317.
- Bottomly, D., Long, N., Schultz, A. R., Kurtz, S. E., Tognon, C. E., Johnson, K., Abel, M., Agarwal, A., Avaylon, S., Benton, E., Blucher, A., Borate, U., Braun, T. P., Brown, J., Bryant, J., Burke, R., Carlos, A., Chang, B. H., Cho, H. J., Christy, S., Coblentz, C., Cohen, A. M., d’Almeida, A., Cook, R., Danilov, A., Dao, K. T., Degnin, M., Dibb, J., Eide, C. A., English, I., Hagler, S., Harrelson, H., Henson, R., Ho, H., Joshi, S. K., Junio, B., Kaempf, A., Kosaka, Y., Laderas, T., Lawhead, M., Lee, H., Leonard, J. T., Lin, C., Lind, E. F., Liu, S. Q., Lo, P., Loriaux, M. M., Luty, S., Maxson, J. E., Macey, T., Martinez, J., Minnier, J., Monteblanco, A., Mori, M., Morrow, Q., Nelson, D., Ramsdill, J., Rofelty, A., Rogers, A., Romine, K. A., Ryabinin, P., Saultz, J. N., Sampson, D. A., Savage, S.L., Schuff, R., Searles, R., Smith, R. L., Spurgeon, S. E., Sweeney, T., Swords, R. T., Thapa, A., Thiel-Klare, K., Traer, E., Wagner, J., Wilmot, B., Wolf, J., Wu, G., Yates, A., Zhang, H., Cogle, C. R., Collins, R.H., Deininger, M.W., Hourigan, C.S., Jordan, C. T., Lin, T. L., Martinez, M. E., Pallapati, R .R., Pollyea, D. A., Pomicter, A. D., Watts, J. M., Weir, S. J., Druker, B. J., McWeeney, S. K., and Tyner, J. W. (2022) Integrative analysis of drug response and clinical outcome in acute myeloid leukemia, Cancer Cell, 40, 850-864.e9, https://doi.org/10.1016/j.ccell.2022.07.002.
- Benjamini, Y., and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Statist. Soc., 57, 289-300, https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.
- Li, L. Y., Guan, Y. D., Chen, X. S., Yang, J. M., and Cheng, Y. (2021) DNA repair pathways in cancer therapy and resistance, Front. Pharmacol, 11, 629266, https://doi.org/10.3389/fphar.2020.629266.
- Jurkovicova, D., Neophytou, C. M., Gašparović, A. Č., and Gonçalves, A. C. (2022) DNA damage response in cancer therapy and resistance: challenges and opportunities, Int. J. Mol. Sci., 23, 14672, https://doi.org/10.3390/ijms232314672.
- Nastasi, C., Mannarino, L., and D’Incalci, M. (2020) DNA damage response and immune defense, Int. J. Mol. Sci., 21, 7504, https://doi.org/10.3390/ijms21207504.
- Ronco, C., Martin, A. R., Demange, L., and Benhida, R. (2016) ATM, ATR, CHK1, CHK2 and WEE1 inhibitors in cancer and cancer stem cells, Medchemcomm., 8, 295-319, https://doi.org/10.1039/C6MD00439C.
- Ryan, E. L., Hollingworth, R., and Grand, R. J. (2016) Activation of the DNA damage response by RNA viruses, Biomolecul., 6, 2, https://doi.org/10.3390/biom6010002.
- Day, T. W., Wu, C. H., and Safa, A. R. (2009) Etoposide induces protein kinase Cdelta- and caspase-3-dependent apoptosis in neuroblastoma cancer cells, Mol. Pharmacol., 76, 632-640, https://doi.org/10.1124/mol.109.054999.
- Elmore, S. (2007) Apoptosis: a review of programmed cell death, Toxicol. Pathol., 35, 495-516, https://doi.org/10.1080/01926230701320337.
- Herceg, Z., and Wang, Z. Q. (1999) Failure of poly(ADP-ribose) polymerase cleavage by caspases leads to induction of necrosis and enhanced apoptosis, Mol. Cell. Boil., 19, 5124-5133, https://doi.org/10.1128/mcb.19.7.5124.
- Oberhammer, F. A., Hochegger, K., Fröschl, G., Tiefenbacher, R., and Pavelka, M. (1994) Chromatin condensation during apoptosis is accompanied by degradation of lamin A + B, without enhanced activation of cdc2 kinase, J. Cell Boil., 126, 827-837, https://doi.org/10.1083/jcb.126.4.827.
- Bae, S., Park, P. S. U., Lee, Y., Mun, S. H., Giannopoulou, E., Fujii, T., Lee, K. P., Violante, S. N., Cross, J. R., and Park-Min, K. H. (2021) MYC-mediated early glycolysis negatively regulates proinflammatory responses by controlling IRF4 in inflammatory macrophages, Cell Rep., 35, 109264, https://doi.org/10.1016/j.celrep.2021.109264.
- Liu, L., Lu, Y., Martinez, J., Bi, Y., Lian, G., Wang, T., Milasta, S., Wang, J., Yang, M., Liu, G., Green, D. R., and Wang, R. (2016) Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1α-dependent, Proc. Natl. Acad. Sci. USA, 113, 1564-1569, https://doi.org/10.1073/pnas.1518000113.
- Lee, H. Y., Cha, J., Kim, S. K., Park, J. H., Song, K. H., Kim, P., and Kim, M. Y. (2019) c-MYC drives breast cancer metastasis to the brain, but promotes synthetic lethality with TRAIL, Mol. Cancer Res., 17, 544-554, https://doi.org/10.1158/1541-7786.MCR-18-0630.
- Buzun, K., Bielawska, A., Bielawski, K., and Gornowicz, A. (2020) DNA topoisomerases as molecular targets for anticancer drugs, J. Enzyme Inhib. Med. Chem., 35, 1781-1799, https://doi.org/10.1080/14756366.2020.1821676.
- Grant, C. H., and Gourley, C. (2015) Relevant cancer diagnoses, commonly used chemotherapy agents and their biochemical mechanisms of action, Cancer Treat. Ovary, 21-33, https://doi.org/10.1016/B978-0-12-801591-9.00002-3.
- Jayashree, S., Nirekshana, K., Guha, G., and Bhakta-Guha, D. (2018) Cancer chemotherapeutics in rheumatoid arthritis: a convoluted connection, Biomed. Pharmacother., 102, 894-911, https://doi.org/10.1016/j.biopha.2018.03.123.
- Lei, J., Yin, X., Shang, H., and Jiang, Y. (2019) IP-10 is highly involved in HIV infection, Cytokine, 115, 97-103, https://doi.org/10.1016/j.cyto.2018.11.018.
- Phillips, A. C., Ernst, M. K., Bates, S., Rice, N. R., and Vousden, K. H. (1999) E2F-1 potentiates cell death by blocking antiapoptotic signaling pathways, Mol. Cell, 4, 771-781, https://doi.org/10.1016/S1097-2765(00)80387-1.
- Luoto, K. R., Meng, A. X., Wasylishen, A. R., Zhao, H., Coackley, C. L., Penn, L. Z., and Bristow, R. G. (2010) Tumor cell kill by c-MYC depletion: role of MYC-regulated genes that control DNA double-strand break repair, Cancer Res., 70, 8748-8759, https://doi.org/10.1158/0008-5472.CAN-10-0944.
- Bretones, G., Delgado, M. D., and León, J. (2015) Myc and cell cycle control, Biochim. Biophys. Acta, 1849, 506-516, https://doi.org/10.1016/j.bbagrm.2014.03.013.
- Chiron, M., Demur, C., Pierson, V., Jaffrezou, J. P., Muller, C., Saivin, S., Bordier, C., Bousquet, C., Dastugue, N., and Laurent, G. (1992) Sensitivity of fresh acute myeloid leukemia cells to etoposide: relationship with cell growth characteristics and DNA single-strand breaks, Blood, 80, 1307-1315. https://doi.org/10.1182/blood.v80.5.1307.1307.
- Bromberg, K. D., Burgin, A. B., and Osheroff, N. (2003) A two-drug model for etoposide action against human topoisomerase IIalpha, J. Boil. Chem., 278, 7406-7412, https://doi.org/10.1074/jbc.M212056200.
- Muslimović, A., Nyström, S., Gao, Y., and Hammarsten, O. (2009) Numerical analysis of etoposide induced DNA breaks, PLoS One, 4, e5859, https://doi.org/10.1371/journal.pone.0005859.
- Berger, J. M., Gamblin, S. J., Harrison, S. C., and Wang, J. C. (1996) Structure and mechanism of DNA topoisomerase II, Nature, 379, 225-232, https://doi.org/10.1038/379225a0.
- Tounekti, O., Kenani, A., Foray, N., Orlowski, S., and Mir, L. M. (2001) The ratio of single- to double-strand DNA breaks and their absolute values determine cell death pathway, Br. J. Cancer, 84, 1272-1279, https://doi.org/10.1054/bjoc.2001.1786.
- Lee, J. H., and Paull, T. T. (2005) ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex, Science, 308, 551-554, https://doi.org/10.1126/science.1108297.
- Shibata, A., and Jeggo, P. A. (2021) ATM’s role in the repair of DNA double-strand breaks, Genes, 12, 1370, https://doi.org/10.3390/genes12091370.
- Maréchal, A., and Zou, L. (2013) DNA damage sensing by the ATM and ATR kinases, Cold Spring Harb. Perspect. Boil., 5, a012716, https://doi.org/10.1101/cshperspect.a012716.
- Ganapathi, R. N., and Ganapathi, M. K. (2013) Mechanisms regulating resistance to inhibitors of topoisomerase II, Front. Pharmacol., 4, 89, https://doi.org/10.3389/fphar.2013.00089.
- Sullivan, D. M., Glisson, B. S., Hodges, P. K., Smallwood-Kentro, S., and Ross, W. E. (1986) Proliferation dependence of topoisomerase II mediated drug action, Biochem., 25, 2248-2256, https://doi.org/10.1021/bi00356a060.
- Dingemans, A. M., Pinedo, H. M., and Giaccone, G. (1998) Clinical resistance to topoisomerase-targeted drugs, Biochim. Biophys. Acta, 1400, 275-288, https://doi.org/10.1016/S0167-4781(98)00141-9.
- Larsen, A. K., Skladanowski, A., and Bojanowski, K. (1996) The roles of DNA topoisomerase II during the cell cycle, Prog. Cell Cycle Res., 2, 229-239, https://doi.org/10.1007/978-1-4615-5873-6_22.
- Lee, J. H., and Berger, J. M. (2019) Cell cycle-dependent control and roles of DNA topoisomerase II, Genes, 10, 859, https://doi.org/10.3390/genes10110859.
- Kimura, K., Saijo, M., Ui, M., and Enomoto, T. (1994) Growth state- and cell cycle-dependent fluctuation in the expression of two forms of DNA topoisomerase II and possible specific modification of the higher molecular weight form in the M phase, J. Boil. Chem, 269, 1173-1176, https://doi.org/10.1016/S0021-9258(17)42238-1.
- Singh, B. N., Mudgil, Y., John, R., Achary, V. M., Tripathy, M. K., Sopory, S. K., Reddy, M. K., and Kaul, T. (2015) Cell cycle stage-specific differential expression of topoisomerase I in tobacco BY-2 cells and its ectopic overexpression and knockdown unravels its crucial role in plant morphogenesis and development, Plant Sci., 240, 182-192, https://doi.org/10.1016/j.plantsci.2015.09.016.
- Das, S. K., Kuzin, V., Cameron, D. P., Sanford, S., Jha, R. K., Nie, Z., Rosello, M. T., Holewinski, R., Andresson, T., Wisniewski, J., Natsume, T., Price, D. H., Lewis, B. A., Kouzine, F., Levens, D., and Baranello, L. (2022) MYC assembles and stimulates topoisomerases 1 and 2 in a “topoisome”, Mol. Cell, 82, 140-158.e12, https://doi.org/10.1016/ j.molcel.2021.11.016.
- Jiao, W., Lin, H. M., Timmons, J., Nagaich, A. K., Ng, S. W., Misteli, T., and Rane, S. G. (2005) E2F-dependent repression of topoisomerase II regulates heterochromatin formation and apoptosis in cells with melanoma-prone mutation, Cancer Res., 65, 4067-4077, https://doi.org/10.1158/0008-5472.CAN-04-3999.
- Kotredes, K. P., and Gamero, A. M. (2013) Interferons as inducers of apoptosis in malignant cells, J. Interferon Cytokine Res., 33, 162-170, https://doi.org/10.1089/jir.2012.0110.
- Cheon, H., Wang, Y., Wightman, S. M., Jackson, M. W., and Stark, G. R. (2023) How cancer cells make and respond to interferon-I, Trends Cancer, 9, 83-92, https://doi.org/10.1016/j.trecan.2022.09.003.
- Di Franco, S., Turdo, A., Todaro, M., and Stassi, G. (2017) Role of type I and ii interferons in colorectal cancer and melanoma, Front. Immune., 8, 878, https://doi.org/10.3389/fimmu.2017.00878.
- Cheon, H., Holvey-Bates, E. G., McGrail, D. J., and Stark, G. R. (2021) PD-L1 sustains chronic, cancer cell-intrinsic responses to type I interferon, enhancing resistance to DNA damage, Proc. Natl. Acad. Sci. USA, 118, e2112258118, https://doi.org/10.1073/pnas.2112258118.
- Erdal, E., Haider, S., Rehwinkel, J., Harris, A. L., and McHugh, P. J. (2017) A prosurvival DNA damage-induced cytoplasmic interferon response is mediated by end resection factors and is limited by Trex1, Genes Dev., 31, 353-369, https://doi.org/10.1101/gad.289769.116.
- Gaston, J., Cheradame, L., Yvonnet, V., Deas, O., Poupon, M. F., Judde, J. G., Cairo, S., and Goffin, V. (2016) Intracellular STING inactivation sensitizes breast cancer cells to genotoxic agents, Oncotarget, 7, 77205-77224, https://doi.org/10.18632/oncotarget.12858.
- Godwin, P., Baird, A. M., Heavey, S., Barr, M. P., O’Byrne, K. J., and Gately, K. (2013) Targeting nuclear factor-kappa B to overcome resistance to chemotherapy, Front. Oncol., 3, 120, https://doi.org/10.3389/fonc.2013.00120.
- Pfeffer, L. M. (2011) The role of nuclear factor κB in the interferon response, J. Interferon Cytokine Res., 31, 553-559, https://doi.org/10.1089/jir.2011.0028.
- Willemsen, J., Neuhoff, M. T., Hoyler, T., Noir, E., Tessier, C., Sarret, S., Thorsen, T. N., Littlewood-Evans, A., Zhang, J., Hasan, M., Rush, J. S., Guerini, D., and Siegel, R. M. (2021) TNF leads to mtDNA release and cGAS/STING-dependent interferon responses that support inflammatory arthritis, Cell Rep., 37, 109977, https://doi.org/10.1016/j.celrep.2021.109977.
- Wu, Y., and Zhou, B. P. (2010) TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion, British J. Cancer, 102, 639-644, https://doi.org/10.1038/sj.bjc.6605530.
- Guha, M., and Mackman, N. (2001) LPS induction of gene expression in human monocytes, Cell. Signal., 13, 85-94, https://doi.org/10.1016/S0898-6568(00)00149-2.
- García-González, V., and Mas-Oliva, J. A. (2017) Novel β-adaptin/c-Myc complex formation modulated by oxidative stress in the control of the cell cycle in macrophages and its implication in atherogenesis, Sci. Rep., 7, 13442, https://doi.org/10.1038/s41598-017-13880-5.
- Ankers, J. M., Awais, R., Jones, N. A., Boyd, J., Ryan, S., Adamson, A. D., Harper, C. V., Bridge, L., Spiller, D. G., Jackson, D. A., Paszek, P., Sée, V., and White, M. R. (2016) Dynamic NF-κB and E2F interactions control the priority and timing of inflammatory signalling and cell proliferation, eLife, 5, e10473, https://doi.org/10.7554/eLife.10473.
- Araki, K., Kawauchi, K., and Tanaka, N. (2008) IKK/NF-kappaB signaling pathway inhibits cell-cycle progression by a novel Rb-independent suppression system for E2F transcription factors, Oncogene, 27, 5696-5705, https://doi.org/10.1038/onc.2008.184.
Дополнительные файлы
