A simplified approach to describing the kinetic properties of impurity ions in a weakly ionized helium plasma

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

Using an approximate approach that is valid for a large ratio of the ion mass to the mass of the neutral particle, the mobility of O2+, N2+, O2-, and O4- ions was calculated in helium and good agreement was obtained with the available results of Monte Carlo calculations and experimental data at high values of the reduced electric field. This simplified approach was used to determine the average energy of O4- ions and the rate constants of dissociation of these ions in helium. The obtained ion characteristics were compared with the results of more accurate calculations using the Monte Carlo method. Good agreement has been obtained between these two approaches for the average ion energy, but for the dissociation rate constant the difference is quite significant, reaching an order of magnitude or more. It was shown that this difference is associated with the peculiarities of the energy distribution of ions for a large ratio of the ion mass to the mass of the neutral particle.

Толық мәтін

Рұқсат жабық

Авторлар туралы

N. Alexandrov

Moscow Institute of Physics and Technology; Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences; Higher School of Economics

Хат алмасуға жауапты Автор.
Email: nick_aleksandrov@mail.ru
Ресей, Dolgoprudny, 141701; Nizhny Novgorod, 603155; Moscow, 101000

A. Ponomarev

Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences; Higher School of Economics

Email: nick_aleksandrov@mail.ru
Ресей, Nizhny Novgorod, 603155; Moscow, 101000

Әдебиет тізімі

  1. Райзер Ю.П. Физика газового разряда. М.: Наука, 1992.
  2. Alves L.L., Bogaerts A., Guerra V., Turner M.M. // Plasma Sources Sci. Technol. 2018. V. 27. P. 023002.
  3. Plasma modeling: Methods and applications / Ed. by G. Colonna, A. D’Angola. Bristol: IOP Publishing, 2016.
  4. Хаксли Л., Кромптон Р. Диффузия и дрейф электронов в газах. М.: Мир, 1977.
  5. Мак-Даниэль И., Мэзон Э. Подвижность и диффузия ионов в газах. М.: Мир, 1976.
  6. Mason E.A., McDaniel E.W. Transport properties of ions in gases. New York: Wiley, 1988.
  7. Viehland L.A. Gaseous ion mobility, diffusion, and reaction. Springer series on atomic, optical and plasma physics / Ed. G.D.F. Drake. V. 105. Cham: Springer Nature Switzerland AG, 2018.
  8. Longo S. // Plasma Sources Sci. Technol. 2006. V. 15. P. S181.
  9. Kihara T. // Rev. Mod. Phys. 1952. V. 24. P. 45.
  10. Wannier G.H. // Bell Syst. Tech. J. 1953. V. 32. P. 170.
  11. Смирнов Б.М. // ДАН СССР. 1966. Т. 168. С. 322.
  12. Lu X., Laroussi M., Puech V. // Plasma Sources Sci. Technol. 2012. V. 21. P. 034005.
  13. Winter J., Brandenburg R., Weltmann K.D. // Plasma Sources Sci. Technol. 2015. V. 24. P. 064001.
  14. Lu X., Naidis G.V., Laroussi M., Ostrikov K. // Phys. Rep. 2014. V. 540. P. 123.
  15. Lu X., Naidis G.V., Laroussi M., Reuter S., Graves D.B., Ostrikov K. // Phys. Rep. 2016. V. 630. P. 1.
  16. Ponomarev A.A., Aleksandrov N.L. // Phys. Plasmas. 2024. V. 31. P. 093509.
  17. Chang L., Nie L., Xiang Y., X. Li X. // Phys. Plasmas. 2016. V. 23. P. 123513.
  18. Yousfi M., Hennad A., Benhenni M., Eichwald O., Merbahi N. // J. Appl. Phys. 2012. V. 112. P. 043301.
  19. Ponomarev A.A., Aleksandrov N.L. // Phys. Plasmas. 2024. V. 31. P. 043517.
  20. Ellis H.W., Pai R.Y., McDaniel E.W., Mason E.A., Viehland L.A. // At. Data Nucl. Data Tables. 1976. V. 17. P. 177.
  21. de Urquijo J., Bekstein A., Ducasse O., Ruiz-Vargas G., Yousfi M., Benhenni M. // Eur. Phys. J. D. 2009. V. 55. P. 637.
  22. Sieck L.W., Herron J.T., Green D.S. // Plasma Chem. Plasma Proc. 2000. V. 20. P. 2000.
  23. Aleksandrov N.L., Ponomarev A.A. // Plasma Sources Sci. Technol. 2015. V. 24. P. 035001.
  24. Woo S.B., Wong S.F. // J. Chem. Phys. 1971. V. 55. P. 3531.
  25. Albritton D.L., Dotan I., Lindinger W., McFarland M., Tellinghuisen J., Fehsenfeld F.C. // J. Chem. Phys. 1977. V. 66. P. 410.
  26. Lin S.L., Bardsley J.N. // J. Chem. Phys. 1977. V. 66. P. 435.
  27. Viehland L.A., Mason E.A. // J. Chem. Phys. 1977. V. 66. P. 422.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Transport cross sections of ion scattering on He atoms depending on the energy of relative motion.

Жүктеу (13KB)
3. Fig. 2. Reduced mobility of ions (a) and (b) in He depending on the reduced electric field. Solid curves – calculation by the Monte Carlo method [18], dashed curves – calculation based on formula (1), symbols – experiment [20].

Жүктеу (26KB)
4. Fig. 3. Reduced mobility of ions (a) and (b) in He depending on the reduced electric field. Solid curves – calculation by the Monte Carlo method (calculation [19] for ions and calculation of this work for ions), dashed curves – calculation based on formula (1), symbols – experiment [20].

Жүктеу (28KB)
5. Fig. 4. Total average energy Ei and energy of chaotic motion Ech of ions in He, calculated by the Monte Carlo method [16] (solid curves) and according to formulas (1) and (3) (dashed curves), depending on the reduced electric field.

Жүктеу (12KB)
6. Fig. 5. The rate constant of ion dissociation (reaction (6)) on He atoms in pure helium and on O2 molecules in pure oxygen depending on the reduced electric field. Solid curves are calculations by the Monte Carlo method, dashed curves are approximate calculations of this work.

Жүктеу (13KB)
7. Fig. 6. The rate constant of ion dissociation (reaction (6)) on He atoms in pure helium and on O2 molecules in pure oxygen depending on the effective temperature of ions Teff. Solid curves are calculations by the Monte Carlo method, dashed curves are approximate calculations of this work.

Жүктеу (13KB)
8. Fig. 7. The ion distribution function (1) in pure helium (in the laboratory coordinate system) at E/N = 100 Td and the Maxwellian distribution function (2) corresponding to the same average ion energy Ei = 4.6 eV.

Жүктеу (14KB)

© Russian Academy of Sciences, 2024