Age and origin of Bereinsky complex Granitoids of Kamensky Terrane of the Monghol-Okhotsk orogenic belt: results of U-Pb (ID tims) geochronological and Sm-Nd isotope-geochemical research
- 作者: Dril S.I.1, Ivanova A.A.2, Kovach V.P.2, Kotov A.B.2, Salnikova E.B.2, Plotkina J.V.2, Zarubina O.V.1
-
隶属关系:
- Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences
- Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences
- 期: 卷 516, 编号 1 (2024)
- 页面: 409-416
- 栏目: PETROLOGY
- ##submission.dateSubmitted##: 31.01.2025
- ##submission.datePublished##: 18.12.2024
- URL: https://ta-journal.ru/2686-7397/article/view/650067
- DOI: https://doi.org/10.31857/S2686739724050112
- ID: 650067
如何引用文章
详细
Dating of magmatic rocks from paleo-island arcs of orogenic belts helps to define the precise timing of subduction processes that took place during the formation of the orogen. Within the central (East Trans-Baikal) part of the Mongol-Okhotsk orogenic belt, the Kamensk island-arc terrane is an example of such paleo-island-arc complex. Its intrusive part is included into the Bereinsky complex, represented by a gabbro-diorite-tonalite-plagiogranite series of rocks demonstrating subduction geochemical characteristics. The dating of zircons from acidic rocks of this complex by the U–Pb classical method showed that they were produced in a narrow time interval – 203±1–205±1 Ma, which corresponds to Norian/Rhaetian boundary of the Late Triassic. Taking into account the previously obtained age of the diorites (254±5 Ma), the timing of formation of the entire series of intrusive rocks is about 50 Ma, thus indicating in the Late Permian – Late Triassic the subduction along the northern (in modern coordinates) margin of the Mongol-Okhotsk Paleocean beneath the Siberian paleocontinent. Diorites of the first phase have positive values ɛND(254MA) = 3.2–3.6 (TNd(DM) = 879–994 Ma), and plagiogranites – ɛND(205MA) = 2.3–3.5 (TNd(DM) = 859–1028 Ma), which points to the connection of these rocks with the substance of the depleted mantle source and is consistent with the Sm-Nd isotope characteristics of the juvenile crust of the Central Asian orogenic belt. This study was supported by Russian Science Foundation, grant no. 22-27-00775. The resources of the Shared Use Center for Isotope-Geochemical Research (Vinogradov Institute of Geochemistry, Siberian Branch, Russian Academy of Sciences, Irkutsk) were used in this work.
全文:

作者简介
S. Dril
Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: sdril@igc.irk.ru
俄罗斯联邦, Irkutsk
A. Ivanova
Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences
Email: sdril@igc.irk.ru
俄罗斯联邦, St. Petersburg
V. Kovach
Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences
Email: sdril@igc.irk.ru
俄罗斯联邦, St. Petersburg
A. Kotov
Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences
Email: sdril@igc.irk.ru
Corresponding Member of the RAS
俄罗斯联邦, St. PetersburgE. Salnikova
Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences
Email: sdril@igc.irk.ru
俄罗斯联邦, St. Petersburg
J. Plotkina
Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences
Email: sdril@igc.irk.ru
俄罗斯联邦, St. Petersburg
O. Zarubina
Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences
Email: sdril@igc.irk.ru
俄罗斯联邦, Irkutsk
参考
- Windley B. F., Alexeiev D., Xiao W. J., Krener A., Badarch G. Tectonic models for accretion of the Central Asian Orogenic Belt // J. Geol. Soc. Lond. 2007. 164. P. 31–47.
- Krener A., Windley B. F., Badarch G., Tomurtogoo O., Hegner E., Jahn B. M., Gruschka S., Khain E. V., Demoux A., Wingate M. T. D. Accretionary growth and crust-formation in the Central Asian Orogenic Belt and comparison with the Arabian-Nubian shield // Geol. Soc. Am. Mem. 2007. 200. 461.
- Парфенов Л. М., Попеко Л. И., Томуртогоо О. Проблемы тектоники Монголо-Охотского складчатого пояса // Тихоокеанская Геология. 1999. Т. 18. № 5. С. 24–43.
- Wilhem C., Windley B. F., Stampfli G. M. The Altaids of Central Asia: A tectonic and evolutionary innovative review // Earth-Science Reviews. 2012. 113. 303–341.
- Дриль С. И., Кузьмин М. И. Геохимия пород Береинской палеоостровной дуги в центральном секторе Монголо-Охотского складчатого пояса // ДАН. 1998. Т. 360. № 2. С. 241–245.
- Государственная геологическая карта Российской Федерации. Масштаб 1:1000000 (третье поколение). Серия Алдано-Забайкальская. Лист N-50. Сретенск. Объяснительная записка. СПб.: Картографическая фабрика ВСЕГЕИ, 2010. 377 с.
- Митичкин М. А., Перепелов А. Б., Дриль С. И. и др. Редкоземельные элементы и геохимическая типизация интрузивного магматизма Малко-Петропавловской поперечной разломной зоны (Камчатка) // ДАН. 1998. Т. 362. № 1. С. 98–101.
- McDonough W. F., Sun S. S. The composition of the Earth // Chemical Geology. 1995. V. 120. № 3–4. P. 223–253.
- Pearce J. A. Sources and settings of granitic rocks // Episodes. 1996. V. 19. № 4. P. 120–125.
- Тарарин И. А., Бадрединов З. Г., Дриль С. И. и др. Петрология и геохимия мелового гранитоидного магматизма Центральной Камчатки (на примере Крутогоровского и Кольского интрузивных комплексов) // Петрология. 2014. № 6. С. 635–664.
- Krogh T. E. A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination // Geochim. Cosmochim. Acta. 1973. V. 37. P. 485–494.
- Mattinson J. M. Zircon U-Pb chemical abrasion “CA-TIMS” method: combined annealing and multi-step partial dissolution analysis for improved and accuracy of zircon ages // Chem. Geology. 2005. V. 220. P. 47–66.
- Ludwig K. R. PbDat for MS-DOS, version 1.21 // U.S. Geol. Surv. Open-File Rept. 88–542. 1991. 35 p.
- Ludwig K. R. Isoplot 3.70. A Geochronological Toolkit for Microsoft Excel // Berkeley Geochronology Center Spec. Publ. 2003. V. 4.
- Steiger R. H., Jager E. Subcomission of geochronology: convention of the use of decay constants in geo- and cosmochronology // Earth Planet. Sci. Lett. 1976. V. 36. № 2. P. 359–362.
- Stacey J. S., Kramers I. D. Approximation of terrestrial lead isotope evolution by a two-stage model // Earth Planet. Sci. Lett. 1975. V. 26. № 2. P. 207–221.
- Yang Y.-H., Chu Zh. Y., Wu F.-Y. et al. Precise and accurate determination of Sm, Nd concentrations and Nd isotopic compositions in geological samples by MC-ICP-MS // J. Anal. At. Spectrom. 2010. 26. P. 1237–1244.
- Дриль С. И., Лохов И. К., Куриленко А. В. и др. Sr–Nd изотопно-геохимическая характеристика и U–Pb геохронология пород островодужных комплексов Монголо-Охотского складчатого пояса / Современные проблемы геохимии. Материалы Всероссийского совещания, посвященного 95-летию академика Л. В. Таусона (Иркутск, 22–26 октября 2012 г.) Т. 2. С. 220–223.
- Wang T., Tong Y., Zhang L. et al. Phanerozoic granitoids in the central and eastern parts of Central Asia and their tectonic significance // Journal of Asian Earth Sciences. 2017. 145. P. 368–392.
- Дриль С. И., Кузьмин М. И., Носкова Ю. В., Зарубина О. В. Изотопные Sm-Nd характеристики ювенильной коры центральной части Монголо-Охотского орогенного пояса // Доклады РАН. Науки о Земле. 2023. Т. 509. № 2. С. 184–189.
补充文件
