Forecasting the Probability and Magnitude of Solar Proton Events Using Flares and Ejections Data
- Authors: Shlyk N.S.1, Belov A.V.1, Abunina M.A.1
-
Affiliations:
- Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences
- Issue: Vol 65, No 3 (2025)
- Pages: 314-323
- Section: Articles
- URL: https://ta-journal.ru/0016-7940/article/view/686966
- DOI: https://doi.org/10.31857/S0016794025030028
- EDN: https://elibrary.ru/EROVYD
- ID: 686966
Cite item
Abstract
The paper studies various characteristics of solar flares and coronal mass ejections that led or did not lead to the registration of solar proton events near the Earth for the period from 1996 to 2023. A detailed catalog of events was compiled, regression dependences of the parameters of solar sources and proton flux enhancements near the Earth were obtained. A new “proton index” of the event was proposed, and calculations were made of the probability of solar proton events and expected fluxes of particles with different energies. Longitudinal distributions of various parameters characterizing proton flux enhancements were also obtained. The established patterns will form the basis of an empirical model that allows estimating the probability of high-energy particle arrival at the Earth and the expected levels and times of registering the maxima of increases in fluxes of protons with energies > 10 and > 100 MeV.
Full Text

About the authors
N. S. Shlyk
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences
Author for correspondence.
Email: nshlyk@izmiran.ru
Russian Federation, Troitsk
A. V. Belov
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences
Email: nshlyk@izmiran.ru
Russian Federation, Troitsk
M. A. Abunina
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences
Email: nshlyk@izmiran.ru
Russian Federation, Troitsk
References
- Акиньян С.Т., Алибегов М.М., Козловский В.Д., Черток И.М. О количественной диагностике протонных вспышек по характеристикам микроволновых радиовсплесков на частотах ~9 ГГц // Геомагнетизм и аэрономия. Т. 18. № 3. С. 410–414. 1978.
- Белов А.В. Вспышки, выбросы, протонные события // Геомагнетизм и аэрономия. Т. 57. № 6. С. 1–12. 2017. https://doi.org/10.7868/S0016794017060025
- Буров В.А., Очелков Ю.П. О возможности прогноза интенсивности солнечных протонных событий по тепловому рентгеновскому излучению солнечных вспышек // Гелиогеофизические исслед. Вып. 25. С. 30–36. 2020.
- Очелков Ю.П. Модель вероятностной зависимости максимальных интенсивностей солнечных протонных событий и рентгеновских вспышек // Гелиогеофизические исслед. Вып. 31. С. 29–40. 2021. https://doi.org/10.54252/2304-7380_2021_31_29
- Черток И.М. Оценки показателя энергетического спектра протонов по данным о солнечных микроволновых всплесках // Геомагнетизм и аэрономия. Т. 22. № 2. С. 182–186. 1982.
- Черток И.М. Корональные выбросы массы в аспекте космической погоды: I. О диагностике протонных вспышек по радиовсплескам // Изв. РАН. Сер. физ. Т. 70. № 10. С. 1495–1497. 2006.
- Aminalragia-Giamini S., Raptis S., Anastasiadis A., Tsigkanos A., Sandberg I., Papaioannou A., Papadimitriou C., Jiggens P., Aran A., Daglis I.A. Solar energetic particle event occurrence prediction using solar flare soft x-ray measurements and machine learning // J. Space Weather Space Clim. V. 11. Article ID 59. 2021. https://doi.org/10.1051/swsc/2021043
- Anastasiadis A., Papaioannou A., Sandberg I., Georgoulis M., Tziotziou K., Kouloumvakos A., Jiggens P. Predicting Flares and Solar Energetic Particle Events: The FORSPEF Tool // Solar Phys. V. 292. № 9. Article ID. 134. 2017. https://doi.org/10.1007/s11207-017-1163-7
- Aran A., Sanahuja B., Lario D. SOLPENCO: A solar particle engineering code // Adv Space Res. V. 37. № 6. P. 1240–1246. 2006. https://doi.org/10.1016/j.asr.2005.09.019
- Balch C. SEC proton prediction model: verification and analysis // Radiat Meas. V.30. № 3. P. 231–250. 1999. https://doi.org/10.1016/s1350-4487(99)00052-9
- Bazilevskaya G.A., Sladkova A.I., Svirzhevskaya A.K. Features of the solar X-ray bursts related to solar energetic particle events // Adv. Space Res. V. 37. № 8. P. 1421−1425. 2006. https://doi.org/10.1016/j.asr.2005.04.065
- Belov A., Garcia H., Kurt V., Mavromichalaki H., Gerontidou M. Proton enhancements and their relation to x-ray flares during the three last solar cycles // Solar Phys. V. 229. № 1. P. 135−159. 2005. https://doi.org/10.1007/s11207-005-4721-3
- Belov A., Kurt V., Mavromichalaki H., Gerontidou M. Peak-size distributions of proton Fluxes and Associated Soft X-Ray Flares // Solar Phys. V. 246. № 2. P. 457−470. 2007. https://doi.org/10.1007/s11207-007-9071-x
- Borovikov D., Sokolov I.V., Roussev I.I., Taktakishvili A., Gombosi T.I. Toward a quantitative model for simulation and forecast of solar energetic particle production during gradual Events. I. Magnetohydrodynamic background coupled to the SEP Model // Astrophys J. V. 864. № 1. 2018. https://doi.org/10.3847/1538-4357/aad68d
- Chertok I.M. On the correlation between the solar gamma-ray line emission, radio bursts and proton fluxes in the interplanetary space // Astronomische Nachrichten. V. 311. № 6. P. 379–381. 1990.
- Cliver E.W., Ling A.G., Belov A., Yashiro S. Size distributions of solar flares and solar energetic particle events // Astrophys. J. Lett. V. 756. № 2. P. L29−L33. 2012. https://doi.org/10.1088/2041-8205/756/2/L29
- Dierckxsens M., Tziotziou K., Dalla S., Patsou I., Marsh M.S., Crosby N.B., Malandraki O., Tsiropoula G. Relationship between solar energetic particles and properties of flares and CMEs: Statistical analysis of Solar Cycle 23 events // Solar Phys. V. 290. P. 841–874. 2015. https://doi.org/10.1007/s11207-014-0641-4
- Dorman L. Cosmic ray interactions, propagation, and acceleration in space plasmas. Springer, Dordrecht, 2006. 847 p.
- Dorman L., Pustil’nik L., Dai U., Idler M., Keshtova F., Petrov E. Is it possible to organize automatic forecasting of expected radiation hazard level from Solar Cosmic Ray (SCR) events for spacecraft in the heliosphere and magnetosphere and for aircraft in the low Atmosphere? // Adv Space Res. V. 64. № 12. P. 2490–2508. 2019. https://doi.org/10.1016/j.asr.2019.09.038
- Engell A.J., Falconer D.A., Schuh M., Loomis J., Bissett D. SPRINTS: A Framework for Solar-Driven Event Forecasting and Research // Space Weather. V. 15. № 10. P. 1321–1346. 2017. https://doi.org/10.1002/2017SW001660
- Falconer D., Barghouty A.F., Khazanov I., Moore R. A tool for empirical forecasting of major flares, coronal mass ejections, and solar particle events from a proxy of active-region free magnetic energy // Space Weather. V. 9. № 4. Article ID S04003. 2011. https://doi.org/10.1029/2009SW000537
- Gopalswamy N., Mäkelä P., Akiyama S., Yashiro S., Xie H., Thakur N., Kahler S.W. Large solar energetic particle events associated with filament eruptions outside of Active Regions // Astrophys J Lett. V. 806. № 1. Article ID 8. 2015. https://doi.org/10.1088/0004-637X/806/1/8
- Hu J., Li G., Ao X., Zank G.P., Verkhoglyadova O. Modeling particle acceleration and transport at a 2-D CME-Driven shock // J. Geophys. Res.: Space Phys. V. 122. № 11. P. 10938–10963. 2017. https://doi.org/10.1002/2017JA024077
- Kahler S.W. The role of the big flare syndrome in correlations of solar energetic proton fluxes and associated microwave burst parameters // Iulia Zagainova. V. 87. № A5. P. 3439–3448. 1982. https://doi.org/10.1029/JA087iA05p03439
- Kahler S.W. The correlation between solar energetic particle peak intensities and speeds of coronal mass ejections: Effects of ambient particle intensities and energy spectra // J. Geophys. Res. V. 106. P. 20947−20956. 2001. https://doi.org/10.1029/2000JA002231
- Kahler S.W., Ling A.G. Forecasting Solar Energetic Particle (SEP) events with Flare X-ray peak ratios // J. Space Weather Space Clim. V. 8. Article ID A47. 2018. https://doi.org/10.1051/swsc/2018033
- Kasapis S., Zhao L., Chen Y., Wang X., Bobra M., Gombosi T. Interpretable Machine Learning to Forecast SEP Events for Solar Cycle 23 // Space Weather. V. 20. № 2. Article ID e2021SW002842. 2022. https://doi.org/10.1029/2021SW002842
- Kihara K., Huang Y., Nishimura N., Nitta N.V., Yashiro S., Ichimoto K., Asai A. Statistical analysis of the relation between coronal mass ejections and solar energetic particles // Astrophys J. V. 900. № 1. Article ID 75. 2020. https://doi.org/10.3847/1538-4357/aba621
- Lario D., Aran A., Decker R.B. Major solar energetic particle events of solar cycles 22 and 23: Intensities close to the streaming limit // Solar Phys. V. 260. P. 407–421. 2009. https://doi.org/10.1007/s11207-009-9463-1
- Lavasa E., Giannopoulos G., Papaioannou A., Anastasiadis A., Daglis I.A., Aran A., Pacheco D., Sanahuja B. Assessing the predictability of solar energetic particles with the use of machine learning techniques // Solar Phys. V. 296. № 7. Article ID 107. 2021. https://doi.org/10.1007/s11207-021-01837-x
- Luhmann J.G., Ledvina S.A., Krauss-Varban D., Odstrcil D., Riley P. A heliospheric simulation-based approach to SEP source and transport modeling // Adv. Space Res. V. 40. № 3. P. 295–303. 2007. https://doi.org/10.1016/j.asr.2007.03.089
- Luhmann J.G., Mays M.L., Odstrcil D., Li Y., Bain H., Lee C.O., Cohen C.M.S., Mewaldt R.A., Leske R.A., Futaana Y. Prospects for Modeling and Forecasting SEP Events with ENLIL and SEPMOD // Proceedings of the International Astronomical Union. V. 13. № S335. P. 263–267. 2017. https://doi.org/10.1017/S1743921317007396
- Marroquin R.D., Sadykov V., Kosovichev A. et al. // Astrophys. J. V. 952. № 2. Article ID 97. 2023. https://doi.org/10.3847/1538-4357/acdb65
- Marsh M.S., Dalla S., Dierckxsens M., Laitinen T., Crosby N.B. SPARX: A modeling system for solar energetic particle radiation space weather forecasting // Space Weather. V. 13. № 6. P. 386–394. 2015. https://doi.org/10.1002/2014SW001120
- Mishev A.L., Adibpour F., Usoskin I.G., Felsberger E. Computation of dose rate at flight altitudes during ground level enhancements no. 69, 70 and 71 // Adv. Space Res. V. 55. P. 354–362. 2015. https://doi.org/10.1016/j.asr.2014.06.020
- Núñez M, Paul-Pena D. Predicting > 10 MeV SEP Events from solar flare and radio burst data // Universe. V. 6. № 10. Article ID 161. 2020. https://doi.org/10.3390/universe6100161
- Núñez M. Evaluation of the UMASEP-10 Version 2 Tool for Predicting All > 10 MeV SEP Events of Solar Cycles 22, 23 and 24 // Universe. V. 8. Article ID 35. 2022. https://doi.org/10.3390/universe8010035
- Papaioannou A., Sandberg I., Anastasiadis A., Kouloumvakos A., Georgoulis M.K., Tziotziou K., Tsiropoula G., Jiggens P., Hilgers A. Solar flares, coronal mass ejections and solar energetic particle event characteristics // J. Space Weather. Space Clim. V. 6. Article ID A42. 2016. https://doi.org/10.1051/swsc/2016035
- Papaioannou A., Vainio R., Raukunen O., Jiggens P., Aran A., Dierckxsens M., Mallios S.A., Paassilta M., Anastasiadis A. The probabilistic solar particle event forecasting (PROSPER) model // J. Space Weather. Space Clim. V. 12. Article ID 24. 2022. https://doi.org/10.1051/swsc/2022019
- Papaioannou A., Herbst K., Ramm T., Cliver E.W., Lario D., Veronig A.M. Revisiting empirical solar energetic particle scaling relations. I. Solar flares // A&A. V. 671. Article ID A66. 2023. https://doi.org/10.1051/0004-6361/202243407
- Papaioannou A., Herbst K., Ramm T., Lario D., Veronig A.M. Revisiting empirical solar energetic particle scaling relations. II. Coronal mass ejections // A&A. V. 690. Article ID A60. 2024. https://doi.org/10.1051/0004-6361/202450705
- Posner A. Up to 1-hour forecasting of radiation hazards from solar energetic ion events with relativistic electrons // Space Weather. V. 5. № 5. Article ID 05001. 2007. https://doi.org/10.1029/2006SW000268
- Richardson I.G., Mays M.L., Thompson B.J. Prediction of solar energetic particle event peak proton intensity using a simple algorithm based on CME speed and direction and observations of associated solar phenomena // Space Weather. V. 16. № 11. P. 1862–1881. 2018. https://doi.org/10.1029/2018SW002032
- Richardson I.G., von Rosenvinge T.T., Cane H.V. The properties of solar energetic particle event-associated coronal mass ejections reported in different CME catalogs // Solar Phys. V. 290. № 6. P. 1741–1759. 2015. https://doi.org/10.48550/arXiv.1505.03071
- Smart D.F., Shea M.A. PPS76: A computerized event mode solar proton forecasting technique. In: Donnelly, R.F. (Ed.), NOAA Solar-Terrestrial Predictions Proceedings. V. 1. P. 406–427. 1979.
- Sokolov I.V., Roussev I.I., Gombosi T.I., Lee M.A., Kóta J., Forbes T.G., Manchester W.B., Sakai J.I. A new field line advection model for solar particle acceleration // Astrophys. J. Lett. V. 616. № 2. P. L171–L174. 2004. https://doi.org/10.1086/426812
- Stumpo M., Laurenza M., Benella S., Marcucci M.F. Predicting the energetic proton flux with a machine learning regression algorithm // Astrophys. J. V. 975. № 1. Article ID 8. 2024. https://doi.org/10.3847/1538-4357/ad7734
- Torres J., Zhao L., Chan P. K., Zhang M. A machine learning approach to predicting SEP events using properties of coronal mass ejections // Space Weather. V. 20. Article ID e2021SW002797. 2022. https://doi.org/10.1029/2021SW002797
- Townsend L.W., Adams J.H., Blattnig et al. Solar particle event storm shelter requirements for missions beyond low Earth orbit // Life Sci. Space Res. V. 17 P. 32–39. 2018. https://doi.org/10.1016/j.lssr.2018.02.002
- Whitman K., Egeland R., Richardson IA.G. et al. Review of solar energetic particle prediction models // Adv. Space Res. V. 72. № 12. P. 5161–5242. 2023. https://doi.org/10.1016/j.asr.2022.08.006
- Zhang M., Zhao L. Precipitation and release of solar energetic particles from the solar coronal magnetic field // Astrophys. J. V. 846. № 2. Article ID 107. 2017. https://doi.org/10.3847/1538-4357/aa86a8
- Zhong Q., Wang J., Meng X., Liu S., Gong J. Prediction model for solar energetic proton events: Analysis and verification // Space Weather. V. 17. № 5. P. 709–726. 2019. https://doi.org/10.1029/2018SW001915
Supplementary files
