Forecasting the Probability and Magnitude of Solar Proton Events Using Flares and Ejections Data

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper studies various characteristics of solar flares and coronal mass ejections that led or did not lead to the registration of solar proton events near the Earth for the period from 1996 to 2023. A detailed catalog of events was compiled, regression dependences of the parameters of solar sources and proton flux enhancements near the Earth were obtained. A new “proton index” of the event was proposed, and calculations were made of the probability of solar proton events and expected fluxes of particles with different energies. Longitudinal distributions of various parameters characterizing proton flux enhancements were also obtained. The established patterns will form the basis of an empirical model that allows estimating the probability of high-energy particle arrival at the Earth and the expected levels and times of registering the maxima of increases in fluxes of protons with energies > 10 and > 100 MeV.

Full Text

Restricted Access

About the authors

N. S. Shlyk

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences

Author for correspondence.
Email: nshlyk@izmiran.ru
Russian Federation, Troitsk

A. V. Belov

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences

Email: nshlyk@izmiran.ru
Russian Federation, Troitsk

M. A. Abunina

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences

Email: nshlyk@izmiran.ru
Russian Federation, Troitsk

References

  1. Акиньян С.Т., Алибегов М.М., Козловский В.Д., Черток И.М. О количественной диагностике протонных вспышек по характеристикам микроволновых радиовсплесков на частотах ~9 ГГц // Геомагнетизм и аэрономия. Т. 18. № 3. С. 410–414. 1978.
  2. Белов А.В. Вспышки, выбросы, протонные события // Геомагнетизм и аэрономия. Т. 57. № 6. С. 1–12. 2017. https://doi.org/10.7868/S0016794017060025
  3. Буров В.А., Очелков Ю.П. О возможности прогноза интенсивности солнечных протонных событий по тепловому рентгеновскому излучению солнечных вспышек // Гелиогеофизические исслед. Вып. 25. С. 30–36. 2020.
  4. Очелков Ю.П. Модель вероятностной зависимости максимальных интенсивностей солнечных протонных событий и рентгеновских вспышек // Гелиогеофизические исслед. Вып. 31. С. 29–40. 2021. https://doi.org/10.54252/2304-7380_2021_31_29
  5. Черток И.М. Оценки показателя энергетического спектра протонов по данным о солнечных микроволновых всплесках // Геомагнетизм и аэрономия. Т. 22. № 2. С. 182–186. 1982.
  6. Черток И.М. Корональные выбросы массы в аспекте космической погоды: I. О диагностике протонных вспышек по радиовсплескам // Изв. РАН. Сер. физ. Т. 70. № 10. С. 1495–1497. 2006.
  7. Aminalragia-Giamini S., Raptis S., Anastasiadis A., Tsigkanos A., Sandberg I., Papaioannou A., Papadimitriou C., Jiggens P., Aran A., Daglis I.A. Solar energetic particle event occurrence prediction using solar flare soft x-ray measurements and machine learning // J. Space Weather Space Clim. V. 11. Article ID 59. 2021. https://doi.org/10.1051/swsc/2021043
  8. Anastasiadis A., Papaioannou A., Sandberg I., Georgoulis M., Tziotziou K., Kouloumvakos A., Jiggens P. Predicting Flares and Solar Energetic Particle Events: The FORSPEF Tool // Solar Phys. V. 292. № 9. Article ID. 134. 2017. https://doi.org/10.1007/s11207-017-1163-7
  9. Aran A., Sanahuja B., Lario D. SOLPENCO: A solar particle engineering code // Adv Space Res. V. 37. № 6. P. 1240–1246. 2006. https://doi.org/10.1016/j.asr.2005.09.019
  10. Balch C. SEC proton prediction model: verification and analysis // Radiat Meas. V.30. № 3. P. 231–250. 1999. https://doi.org/10.1016/s1350-4487(99)00052-9
  11. Bazilevskaya G.A., Sladkova A.I., Svirzhevskaya A.K. Features of the solar X-ray bursts related to solar energetic particle events // Adv. Space Res. V. 37. № 8. P. 1421−1425. 2006. https://doi.org/10.1016/j.asr.2005.04.065
  12. Belov A., Garcia H., Kurt V., Mavromichalaki H., Gerontidou M. Proton enhancements and their relation to x-ray flares during the three last solar cycles // Solar Phys. V. 229. № 1. P. 135−159. 2005. https://doi.org/10.1007/s11207-005-4721-3
  13. Belov A., Kurt V., Mavromichalaki H., Gerontidou M. Peak-size distributions of proton Fluxes and Associated Soft X-Ray Flares // Solar Phys. V. 246. № 2. P. 457−470. 2007. https://doi.org/10.1007/s11207-007-9071-x
  14. Borovikov D., Sokolov I.V., Roussev I.I., Taktakishvili A., Gombosi T.I. Toward a quantitative model for simulation and forecast of solar energetic particle production during gradual Events. I. Magnetohydrodynamic background coupled to the SEP Model // Astrophys J. V. 864. № 1. 2018. https://doi.org/10.3847/1538-4357/aad68d
  15. Chertok I.M. On the correlation between the solar gamma-ray line emission, radio bursts and proton fluxes in the interplanetary space // Astronomische Nachrichten. V. 311. № 6. P. 379–381. 1990.
  16. Cliver E.W., Ling A.G., Belov A., Yashiro S. Size distributions of solar flares and solar energetic particle events // Astrophys. J. Lett. V. 756. № 2. P. L29−L33. 2012. https://doi.org/10.1088/2041-8205/756/2/L29
  17. Dierckxsens M., Tziotziou K., Dalla S., Patsou I., Marsh M.S., Crosby N.B., Malandraki O., Tsiropoula G. Relationship between solar energetic particles and properties of flares and CMEs: Statistical analysis of Solar Cycle 23 events // Solar Phys. V. 290. P. 841–874. 2015. https://doi.org/10.1007/s11207-014-0641-4
  18. Dorman L. Cosmic ray interactions, propagation, and acceleration in space plasmas. Springer, Dordrecht, 2006. 847 p.
  19. Dorman L., Pustil’nik L., Dai U., Idler M., Keshtova F., Petrov E. Is it possible to organize automatic forecasting of expected radiation hazard level from Solar Cosmic Ray (SCR) events for spacecraft in the heliosphere and magnetosphere and for aircraft in the low Atmosphere? // Adv Space Res. V. 64. № 12. P. 2490–2508. 2019. https://doi.org/10.1016/j.asr.2019.09.038
  20. Engell A.J., Falconer D.A., Schuh M., Loomis J., Bissett D. SPRINTS: A Framework for Solar-Driven Event Forecasting and Research // Space Weather. V. 15. № 10. P. 1321–1346. 2017. https://doi.org/10.1002/2017SW001660
  21. Falconer D., Barghouty A.F., Khazanov I., Moore R. A tool for empirical forecasting of major flares, coronal mass ejections, and solar particle events from a proxy of active-region free magnetic energy // Space Weather. V. 9. № 4. Article ID S04003. 2011. https://doi.org/10.1029/2009SW000537
  22. Gopalswamy N., Mäkelä P., Akiyama S., Yashiro S., Xie H., Thakur N., Kahler S.W. Large solar energetic particle events associated with filament eruptions outside of Active Regions // Astrophys J Lett. V. 806. № 1. Article ID 8. 2015. https://doi.org/10.1088/0004-637X/806/1/8
  23. Hu J., Li G., Ao X., Zank G.P., Verkhoglyadova O. Modeling particle acceleration and transport at a 2-D CME-Driven shock // J. Geophys. Res.: Space Phys. V. 122. № 11. P. 10938–10963. 2017. https://doi.org/10.1002/2017JA024077
  24. Kahler S.W. The role of the big flare syndrome in correlations of solar energetic proton fluxes and associated microwave burst parameters // Iulia Zagainova. V. 87. № A5. P. 3439–3448. 1982. https://doi.org/10.1029/JA087iA05p03439
  25. Kahler S.W. The correlation between solar energetic particle peak intensities and speeds of coronal mass ejections: Effects of ambient particle intensities and energy spectra // J. Geophys. Res. V. 106. P. 20947−20956. 2001. https://doi.org/10.1029/2000JA002231
  26. Kahler S.W., Ling A.G. Forecasting Solar Energetic Particle (SEP) events with Flare X-ray peak ratios // J. Space Weather Space Clim. V. 8. Article ID A47. 2018. https://doi.org/10.1051/swsc/2018033
  27. Kasapis S., Zhao L., Chen Y., Wang X., Bobra M., Gombosi T. Interpretable Machine Learning to Forecast SEP Events for Solar Cycle 23 // Space Weather. V. 20. № 2. Article ID e2021SW002842. 2022. https://doi.org/10.1029/2021SW002842
  28. Kihara K., Huang Y., Nishimura N., Nitta N.V., Yashiro S., Ichimoto K., Asai A. Statistical analysis of the relation between coronal mass ejections and solar energetic particles // Astrophys J. V. 900. № 1. Article ID 75. 2020. https://doi.org/10.3847/1538-4357/aba621
  29. Lario D., Aran A., Decker R.B. Major solar energetic particle events of solar cycles 22 and 23: Intensities close to the streaming limit // Solar Phys. V. 260. P. 407–421. 2009. https://doi.org/10.1007/s11207-009-9463-1
  30. Lavasa E., Giannopoulos G., Papaioannou A., Anastasiadis A., Daglis I.A., Aran A., Pacheco D., Sanahuja B. Assessing the predictability of solar energetic particles with the use of machine learning techniques // Solar Phys. V. 296. № 7. Article ID 107. 2021. https://doi.org/10.1007/s11207-021-01837-x
  31. Luhmann J.G., Ledvina S.A., Krauss-Varban D., Odstrcil D., Riley P. A heliospheric simulation-based approach to SEP source and transport modeling // Adv. Space Res. V. 40. № 3. P. 295–303. 2007. https://doi.org/10.1016/j.asr.2007.03.089
  32. Luhmann J.G., Mays M.L., Odstrcil D., Li Y., Bain H., Lee C.O., Cohen C.M.S., Mewaldt R.A., Leske R.A., Futaana Y. Prospects for Modeling and Forecasting SEP Events with ENLIL and SEPMOD // Proceedings of the International Astronomical Union. V. 13. № S335. P. 263–267. 2017. https://doi.org/10.1017/S1743921317007396
  33. Marroquin R.D., Sadykov V., Kosovichev A. et al. // Astrophys. J. V. 952. № 2. Article ID 97. 2023. https://doi.org/10.3847/1538-4357/acdb65
  34. Marsh M.S., Dalla S., Dierckxsens M., Laitinen T., Crosby N.B. SPARX: A modeling system for solar energetic particle radiation space weather forecasting // Space Weather. V. 13. № 6. P. 386–394. 2015. https://doi.org/10.1002/2014SW001120
  35. Mishev A.L., Adibpour F., Usoskin I.G., Felsberger E. Computation of dose rate at flight altitudes during ground level enhancements no. 69, 70 and 71 // Adv. Space Res. V. 55. P. 354–362. 2015. https://doi.org/10.1016/j.asr.2014.06.020
  36. Núñez M, Paul-Pena D. Predicting > 10 MeV SEP Events from solar flare and radio burst data // Universe. V. 6. № 10. Article ID 161. 2020. https://doi.org/10.3390/universe6100161
  37. Núñez M. Evaluation of the UMASEP-10 Version 2 Tool for Predicting All > 10 MeV SEP Events of Solar Cycles 22, 23 and 24 // Universe. V. 8. Article ID 35. 2022. https://doi.org/10.3390/universe8010035
  38. Papaioannou A., Sandberg I., Anastasiadis A., Kouloumvakos A., Georgoulis M.K., Tziotziou K., Tsiropoula G., Jiggens P., Hilgers A. Solar flares, coronal mass ejections and solar energetic particle event characteristics // J. Space Weather. Space Clim. V. 6. Article ID A42. 2016. https://doi.org/10.1051/swsc/2016035
  39. Papaioannou A., Vainio R., Raukunen O., Jiggens P., Aran A., Dierckxsens M., Mallios S.A., Paassilta M., Anastasiadis A. The probabilistic solar particle event forecasting (PROSPER) model // J. Space Weather. Space Clim. V. 12. Article ID 24. 2022. https://doi.org/10.1051/swsc/2022019
  40. Papaioannou A., Herbst K., Ramm T., Cliver E.W., Lario D., Veronig A.M. Revisiting empirical solar energetic particle scaling relations. I. Solar flares // A&A. V. 671. Article ID A66. 2023. https://doi.org/10.1051/0004-6361/202243407
  41. Papaioannou A., Herbst K., Ramm T., Lario D., Veronig A.M. Revisiting empirical solar energetic particle scaling relations. II. Coronal mass ejections // A&A. V. 690. Article ID A60. 2024. https://doi.org/10.1051/0004-6361/202450705
  42. Posner A. Up to 1-hour forecasting of radiation hazards from solar energetic ion events with relativistic electrons // Space Weather. V. 5. № 5. Article ID 05001. 2007. https://doi.org/10.1029/2006SW000268
  43. Richardson I.G., Mays M.L., Thompson B.J. Prediction of solar energetic particle event peak proton intensity using a simple algorithm based on CME speed and direction and observations of associated solar phenomena // Space Weather. V. 16. № 11. P. 1862–1881. 2018. https://doi.org/10.1029/2018SW002032
  44. Richardson I.G., von Rosenvinge T.T., Cane H.V. The properties of solar energetic particle event-associated coronal mass ejections reported in different CME catalogs // Solar Phys. V. 290. № 6. P. 1741–1759. 2015. https://doi.org/10.48550/arXiv.1505.03071
  45. Smart D.F., Shea M.A. PPS76: A computerized event mode solar proton forecasting technique. In: Donnelly, R.F. (Ed.), NOAA Solar-Terrestrial Predictions Proceedings. V. 1. P. 406–427. 1979.
  46. Sokolov I.V., Roussev I.I., Gombosi T.I., Lee M.A., Kóta J., Forbes T.G., Manchester W.B., Sakai J.I. A new field line advection model for solar particle acceleration // Astrophys. J. Lett. V. 616. № 2. P. L171–L174. 2004. https://doi.org/10.1086/426812
  47. Stumpo M., Laurenza M., Benella S., Marcucci M.F. Predicting the energetic proton flux with a machine learning regression algorithm // Astrophys. J. V. 975. № 1. Article ID 8. 2024. https://doi.org/10.3847/1538-4357/ad7734
  48. Torres J., Zhao L., Chan P. K., Zhang M. A machine learning approach to predicting SEP events using properties of coronal mass ejections // Space Weather. V. 20. Article ID e2021SW002797. 2022. https://doi.org/10.1029/2021SW002797
  49. Townsend L.W., Adams J.H., Blattnig et al. Solar particle event storm shelter requirements for missions beyond low Earth orbit // Life Sci. Space Res. V. 17 P. 32–39. 2018. https://doi.org/10.1016/j.lssr.2018.02.002
  50. Whitman K., Egeland R., Richardson IA.G. et al. Review of solar energetic particle prediction models // Adv. Space Res. V. 72. № 12. P. 5161–5242. 2023. https://doi.org/10.1016/j.asr.2022.08.006
  51. Zhang M., Zhao L. Precipitation and release of solar energetic particles from the solar coronal magnetic field // Astrophys. J. V. 846. № 2. Article ID 107. 2017. https://doi.org/10.3847/1538-4357/aa86a8
  52. Zhong Q., Wang J., Meng X., Liu S., Gong J. Prediction model for solar energetic proton events: Analysis and verification // Space Weather. V. 17. № 5. P. 709–726. 2019. https://doi.org/10.1029/2018SW001915

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Relation of the solar source heliolongitude: (a) with the X-ray flux value and (b) with the initial velocity of the CME for different groups of the studied events (light circles - No SEP, dark circles - P10, squares - P100, rhombuses - GLE).

Download (381KB)
3. Fig. 2. Relation of the actually observed maximum fluxes of particles with energies (a) > 10 MeV and (b) > 100 MeV with the fluxes calculated by formulas (3) and (4) for events with a confident binding to solar sources in the longitude range W22-W87.

Download (161KB)
4. Fig. 3. Dependence of the probability of PCA registration on the heliolongitude and protonicity index of the event.

Download (133KB)
5. Fig. 4. Distribution of the parameter dtP10 (h) - the time from the beginning of the corresponding X-ray flare to the registration of the maximum flux of particles with energies > 10 MeV.

Download (74KB)
6. Fig. 5. Longitude dependence of the parameter dtP10.

Download (126KB)
7. Fig. 6. Relation between the actually observed values of particle fluxes and model calculations for groups (a) P10 and (b) P100 for events from the entire solar disc (E85-W88).

Download (225KB)
8. Fig. 7. Relation of the expected maximum flux of particles with energies > 10 MeV (decimal logarithm) with the initial velocity of the CME and the flash index.

Download (104KB)

Copyright (c) 2025 Russian Academy of Sciences