Oscillations of Elastic Bodies with Small Heavy Inclusions (Concentrated Masses)
- Authors: Nazarov S.A.1
-
Affiliations:
- Institute of Problems of Mechanical Engineering of the RAS
- Issue: Vol 89, No 2 (2025)
- Pages: 241-279
- Section: Articles
- URL: https://ta-journal.ru/0032-8235/article/view/686776
- DOI: https://doi.org/10.31857/S0032823525020061
- EDN: https://elibrary.ru/ILJCMI
- ID: 686776
Cite item
Abstract
We construct asymptotics of eigenfrequencies and eigenmodes of a composite anisotropic body with a group of small inclusions while mass of each is larger or equal in order the mass of the surrounding material. If a part of the body surface is rigidly clamped, modes of the natural oscillations are localized in main near the inclusions while the principal asymptotic terms of eigenfrequencies are described by the spectrum of problems about inclusions of unit size in the weightless space. In the case when the body surface is traction free, an interaction of small heavy inclusions is observed, namely the limiting problem consists of system of equations for inclusions in the space which are combined into a single spectral problem with integral terms at the spectral parameter. The structure of the integro-differential equations depends on the mass concentration coefficient as well as disposition of the inclusions. Justification of the derived asymptotic expansions is performed in a representable and most complicated case of superheavy concentrated masses distributed along a line and other situations are considered in the same way.
About the authors
S. A. Nazarov
Institute of Problems of Mechanical Engineering of the RAS
Author for correspondence.
Email: srgnazarov108@gmail.com
Russian Federation, Saint-Petersburg
References
- Lekhnitski S.G. Theory of Elasticity of an Anisotropic Elastic Body. San Francisco: Holden-Day, 1963.
- Bertram A. Elasticity and Plasticity of Large Deformations. Berlin: Springer, 2005.
- Ladyzhenskaya O.A. The Boundary Value Problems of Mathematical Physics. N.Y.: Springer, 1985.
- Fichera G. Existence Theorems in Elasticity. Berlin;Heidelberg;N.Y.: Springer, 1972.
- Lions J.-L., Magenes E. Problémes aux limites non homogénes et applications. Paris: Dunod, 1968.
- Gomez D., Nazarov S.A., Perez M.-E. The formal asymptotics of the eigenfrequences of oscillations of an elastic three-dimensional body with concentrated masses // J. of Math. Sci., 2008, vol. 148, no. 5, pp. 650–674.
- Sanchez-Palencia É. Perturbation of eigenvalues in thermoelasticity and vibration of systems with concentrated masses // in: Trends in Appl. of Pure Math. to Mech. (Palaiseau, 1983), Lecture Notes in Phys., Vol. 195. Berlin: Springer, 1984. pp. 346–368.
- Sanchez-Palencia É, Tchatat H. Vibration de systemes elastiques avec masses concentrees // in: Rendiconti del Seminario matematico della Universita e politecnico di Torino. 1984, v. 42, no. 3, pp. 43–63. (Palaiseau, 1983). Lecture Notes in Phys. Vol. 195. Berlin: Springer, 1984. pp. 346–368.
- Oleinik O.A. Homogenization problems in elasticity. Spectrum of singularly perturbed operators // in: Non Classical Continuum Mechanics, 1987. Lecture Notes series. Vol. 122. Cambridge: Univ. Press, pp. 188–205.
- Oleinik O.A., Shamaev A.S., Yosifian G.A. Mathemaical Problems in Elasticity and Homogenization. Amsterdam;L.;N.Y.: North-Holland, 1992.
- Oleinik O.A. On natural oscillations of bodies with concentrated masses // in: Contemporary Problems in Applied Mathematics and Mathematical Physics. Moscow: Nauka, 1988. pp. 101–128. (in Russian)
- Golovaty Yu.D., Nazarov S.A., Oleinik O.A. Asymptotic expansions of eigenvalues and eigenfunctions in problems on oscillations of a medium with concentrated perturbations // Proc. Steklov Inst. Math., 1990, vol. 192, pp. 42–60.
- Lobo M., Pérez E. Asymptotic behavior of the vibrations of a body having many concentrated masses near the boundary // C.R. Acad. Sci. Paris. Séerie II, 1992, vol. 314, pp. 13–18.
- Lobo M., Pérez E. Vibrations of a membrane with many concentrated masses near the boundary // Math. Models & Methods in Appl. Sci., 1995, vol. 5, no. 5, pp. 565–585.
- Gómez D., Lobo M., Pérez E. On the eigenfunctions associated with the high frequencies in systems with a concentrated mass // J. Math. Pures Appl., 1999, vol. 78, pp. 841–865.
- Rybalko V. Vibration of elastic systems with a large number of tiny heavy inclusions // Asympt. Anal., 2002, vol. 32, no. 1, pp. 27–62.
- Chechkin G.A., Pérez M.E., Yablokova E.I. Non-periodic boundary homogenization and “light” concentrated masses // Indiana Univ. Math. J., 2005, vol. 54, no. 2, pp. 321–348.
- Chechkin G.A. Asymptotic expansions of eigenvalues and eigenfunctions of an elliptic operator in a domain with many “light” concentrated masses situated on the boundary. Two-dimensional case // Izv. Math., 2005, vol. 69, no. 4, pp. 805–846.
- Nazarov S.A. Asymptotic behavior of eigenvalues of the Neumann problem for systems with masses concentrated on a thin toroidal set // Vestn. St.-Petersburg Univ. Math., 2006, vol. 39, no. 3, pp. 149–157.
- Kosmodem’yanskii D.A., Shamaev A.S. Spectral properties of some problems in mechanics of strongly inhomogeneous media // J. of Math. Sci., 2008, vol. 149, no. 6, pp. 1679–1700.
- Chechkin G.A., Cioranescu D., Damlamian A., Piatnitski A.L. On boundary value problem with singular inhomogeneity concentrated on the boundary // J. de Mathématiques Pures et Appliquées, 2012, vol. 98, no. 2, pp. 115–138.
- Nazarov S.A., Perez M.E. On multi-scale asymptotic structure of eigenfunctions in a boundary value problem with concentrated masses near the boundary // Revista Matem. Complutense, 2018, vol. 31, no. 1, pp. 1–62.
- Sanchez-Hubert J., Sanchez-Palencia É. Vibration and Coupling of Continuous System. Asymptotic Methods. Berlin;Heidelberg: Springer, 1989. 421 pp.
- Leal C., Sanchez-Hubert J. Perturbation of the eigenvalues of a membrane with a concentrated mass // Quart. Appl. Math., 1989, vol. 47, no. 1, pp. 93–103.
- Oleinik O.A., Sanchez-Hubert J., Yosifian G.A. On vibrations of a membrane with concentrated masses // Bull. Sci. Math., 1991, vol. 115, no. 1, pp. 1–27.
- Nazarov S.A. “Far-field interaction” of concentrated masses in two-dimensional Neumann and Dirichlet problems // Izv. Math., 2023, vol. 87, no. 1, pp. 61–112.
- Nazarov S.A. A Sanchez-Palencia problem with Neumann boundary conditions // Sov. Math., 1989, vol. 33, no. 11, pp. 73–78.
- Nazarov S.A. Interaction of concentrated masses in a harmonically oscillating spatial body with Neumann boundary conditions // RAIRO Model. Math. Anal. Numer., 1993, vol. 27, no. 6, pp. 777–799.
- Gomez J., Pérez E., Vilasánchez M. Asymptotics for the eigenelements of the Neumann spectral problem with concentrated masses // Indiana Univ. Math. J., 2007, vol. 56, no. 4, pp. 1939–1987.
- Nazarov S.A. Korn’s inequalities for elastic junctions of massive bodies and thin plates and rods // Russ. Math. Surveys, 2008, vol. 63, no. 1, pp. 35–107.
- Nazarov S.A. Models of elastic joint of a plate with rods based on Sobolev point conditions and self-adjoint extensions of differential operators // Diff. Eqns., 2021, vol. 57, no. 5, pp. 683–699.
- Mazja W.G., Nasarow S.A., Plamenewski B.A. Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten. 1 & 2 Berlin: Akademie, 1991.
- Kondrat’ev V.A., Ole`ınik O.A. Boundary-value problems for the system of elasticity theory in unbounded domains. Korn’s inequalities // Russ. Math. Surv., 1988, vol. 43, no. 5, pp. 65–119.
- Duvaut G., Lions J.-L. Les inéquations en mécanique et en physique. Paris: Dunod, 1972.
- Hardy G.H. Note on a theorem of Hilbert // Mathematische Zeitschrift, 1920, vol. 6, pp. 314–317.
- Kondrat’ev V.A. Boundary problems for elliptic equations in domains with conical or angular points // Trans. Moscow Math. Soc., 1967, vol. 16, pp. 227–313.
- Nazarov S.A., Plamenevsky B.A. Elliptic Problems in Domains with Piecewise Smooth Boundaries. Berlin;N.Y.: Walter de Gruyter, 1994.
- Kozlov V.A., Maz’ya V.G., Rossmann J. Elliptic Boundary Value Problems in Domains with Point Singularities. Providence: Amer. Math. Soc., 1997.
- Birman M.S., Solomyak M.Z. Spectral Theory and Selfadjoint Operators in Hilbert Space. Dordrecht: Reidel, 1987.
- Vladimirov V.S. Generalized Function in Mathematical Physics. Moscow: Nauka, 1979.
- Sobolev S.L. Some Applications of Functional Analysis in Mathematical Physics. Providence, Rhode Island: American Math. Soc., 1991.
- Mazja V.G., Plamenevskii B.A. Estimates in Lp and Hölder classes and the Miranda–Agmon maximum principle for solutions of elliptic boundary value problems in domains with singular points on the boundary // Amer. Math. Soc. Transl., 1984, vol. 123, pp. 1–56.
- Nazarov S.A. The polynomial property of self-adjoint elliptic boundary-value problems and the algebraic description of their attributes // Russ. Math. Surv., 1999, vol. 54, no. 5, pp. 947–1014.
- Nazarov S.A. Self-adjoint elliptic boundary-value problems. The polynomial property and formally positive operators // J. Math. Sci., 1998, vol. 92, no. 6, pp. 4338–4353.
- Vishik M.I., Lyusternik L.A. Regular degeneration and boundary layer for linear differential equations with small parameter // Transl., Ser. 2, Am. Math. Soc., 1962, vol. 20, pp. 239–364.
- Van-Dyke M.D. Perturbation Methods in Fluid Mechanics. N.Y.: Acad. Press, 1964.
- Il’in A.M. Matching of Asymptotic Expansions of Solutions of Boundary Value Problems. Providence, Rhode Island: American Math. Soc., 1992.
- Nazarov S.A. Artificial boundary conditions for finding surface waves in the problem of diffraction by a periodic boundary // Comput. Math.&Math. Phys., 2006, vol. 46, no. 12, pp. 2164–2175.
- Kozlov V.A. Maz’ya V.G. Spectral properties of the operator bundles generated by elliptic boundary-value problems in a cone // Funct. Anal. Appl., 1988, vol. 22, no. 2, pp. 114–121.
- Kozlov V.A., Maz’ya V.G., Movchan A.B. Asymptotic Analysis of Fields in Multi-Structures. Oxford: Clarendon, 1999.
Supplementary files
