The Study of the Formation of Solid Solutions of Lithium in Iridium

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The interaction in the Li-Ir system using Li3N as a lithium source was studied depending on the temperature, heat treatment time and total pressure in the system. Using X-ray phase analysis (XRD), it was shown that heat treatment of a powder mixture of Li3N and Ir in a graphite or BN crucible in the temperature range of 800–1200°C leads to the formation of a substitution solid solution of Ir(Li), with the lithium content decreasing with increasing temperature, heat treatment time and decreasing total pressure in the system. The maximum lithium content in iridium reached 6.2% at. It was shown that the use of a closed BN container increases the yield of the Ir(Li) solid solution. The use of graphite or BN crucibles prevents the formation of intermetallic compounds of the Li-Ir system.

Full Text

Restricted Access

About the authors

V. V. Lozanov

Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Author for correspondence.
Email: lozanov.25@yandex.ru
Russian Federation, 18, Kutateladze St., Novosibirsk, 630090; 1, Pirogov St., Novosibirsk, 630090

M. A. Golosov

Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the Russian Academy of Sciences

Email: lozanov.25@yandex.ru
Russian Federation, 18, Kutateladze St., Novosibirsk, 630090

D. V. Valyaev

Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Email: lozanov.25@yandex.ru
Russian Federation, 18, Kutateladze St., Novosibirsk, 630090; 1, Pirogov St., Novosibirsk, 630090

Ya. A. Nikiforov

Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the Russian Academy of Sciences

Email: lozanov.25@yandex.ru
Russian Federation, 18, Kutateladze St., Novosibirsk, 630090

A. V. Utkin

Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Email: lozanov.25@yandex.ru
Russian Federation, 18, Kutateladze St., Novosibirsk, 630090; 1, Pirogov St., Novosibirsk, 630090

N. I. Baklanova

Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the Russian Academy of Sciences

Email: lozanov.25@yandex.ru
Russian Federation, 18, Kutateladze St., Novosibirsk, 630090

References

  1. Abdou M.A., Team T.A., Ying A. et al. // Fusion Eng. Des. 2001. V. 54. P. 181. https://doi.org/10.1016/S0920-3796(00)00433-6
  2. Vertkov A.V., Zharkov M.Yu., Lyublinskii I.E. et al. // Plasma Phys. Rep. 2021. V. 47. P. 1245. https://doi.org/10.1134/S1063780X21110258
  3. Magee C.B. A study of the synthesis and properties of transition-metal hydryls / Final Summary Report, University of Denver, Denver, Colorado, USA, 1964. https://doi.org/10.2172/4675637
  4. Varma S.K., Chang F.C., Magee C.B. // J. Less Common Met. 1978. V. 60. P. P47. https://doi.org/10.1016/0022-5088(78)90189-3
  5. Donkersloot H.C., Van Vucht J.H.N. // J. Less Common Met. 1976. V. 50. P. 279. https://doi.org/10.1016/0022-5088(76)90167-3
  6. Loebich O., Raub Ch.J. // Platinum Met. Rev. 1981. V. 25. P. 113. https://doi.org/10.1595/003214081X253113120
  7. Zhang J., Hu Y.H. // Top. Catal. 2015. V. 58. P. 386. https://doi.org/10.1007/s11244-015-0379-8
  8. Duan L., Liu Q., Li Y. et al. // J. Phys. Chem. C. 2009. V. 113. P. 13386. https://doi.org/10.1021/jp901510j
  9. Yonco R.M., Veleckis E., Maroni V.A. // J. Nucl. Mater. 1975. V. 57. P. 317. https://doi.org/10.1016/0022-3115(75)90216-0
  10. Holleck H. Binäre und ternäre Carbide und Nitride der Übergangsmetalle und ihre Phasenbeziehungen / Habilitationsschrift, Institut für Material- und Festkörperforschung, Kernforschungszentrum Karlsruhe, Germany, 1981. https://publikationen.bibliothek.kit.edu/200015609
  11. Банных Д.А., Голосов М.А., Лозанов В.В. и др. // Неорган. материалы. 2021. Т. 57. № 9. С. 925. https://doi.org/10.31857/S0002337X21090025
  12. Казенас Е.К., Цветков Ю.В. Испарение карбидов / М.: КРАСАНД, 2017. 800 с.
  13. Kim J., Yamasue E., Ichitsubo T. et al. // J. Electroanal. Chem. 2017. V. 799. P. 263. https://doi.org/10.1016/j.jelechem.2017.06.017
  14. Kim J., Yamasue E., Okumura H. et al. // J. Alloys Compd. 2017. V. 707. P. 172. https://doi.org/10.1016/j.jallcom.2017.01.050
  15. Rybin V., Lozanov V., Utkin A. et al. // J. Alloys Compd. 2019. V. 775. P. 503. https://doi.org/10.1016/j.jallcom.2018.10.118
  16. Rabenau A., Schulz H. // J. Less Common Met. 1976. V. 50. P. 155. https://doi.org/10.1016/0022-5088(76)90263-0
  17. Pepinsky R. // Z. Kristallogr. – Cryst. Mater. 1940. V. 102. P. 119. https://doi.org/10.1524/zkri.1940.102.1.119
  18. Cordero B., Gómez V., Platero-Prats A.E. et al. // Dalton Trans. 2008. P. 2832. https://doi.org/10.1039/b801115j
  19. Даркен Л.С., Гурри Р.В. Физическая химия металлов / Пер. с англ. под ред. Сироты Н.Н., М.: Металлургиздат, 1960. 582 с.
  20. Ding Z., Qiu L., Li Y. et al. // Mater. Lett. 2013. V. 107. P. 382. https://doi.org/10.1016/j.matlet.2013.06.037
  21. Lozanov V.V., Baklanova N.I., Bulina N.V. et al. // ACS Appl. Mater. Interfaces. 2018. V. 10. P. 13062. https://doi.org/10.1021/acsami.8b01418
  22. Yamane H., Kikkawa S., Koizumi M. // J. Solid State Chem. 1987. V. 71. P. 1. https://doi.org/10.1016/0022-4596(87)90135-6
  23. Cenzual K., Gelato L.M., Penzo M. et al. // Acta Crystallogr., Sect. B: Struct. Sci. 1991. V. 47. P. 433. https://doi.org/10.1107/S0108768191000903
  24. Зюбин А.С., Зюбина Т.С., Добровольский Ю.А. и др. // Журн. неорган. химии. 2016. Т. 61. № 11. С. 1476. https://doi.org/10.7868/S0044457X16110234
  25. Зюбин А.С., Зюбина Т.С., Добровольский Ю.А. и др. // Журн. неорган. химии. 2017. Т. 62. № 9. С. 1189. https://doi.org/10.7868/S0044457X17090082

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diffractograms (a) of Li3N after rubbing in agate mortar in paraffin (1) and in air (2); SEM image of lithium nitride crystal (b).

Download (257KB)
3. Fig. 2. X-ray diffraction data of sample 1.

Download (77KB)
4. Fig. 3. Reflections of (331) and (420) iridium in samples after heat treatment in vacuum (Ir-800, samples 1-8).

Download (152KB)
5. Fig. 4. Reflexes of (331) and (420) iridium in samples after heat treatment in vacuum (Ir-800, sample 9) and argon (sample 10).

Download (119KB)
6. Fig. 5. Reflexes (331) and (420) of iridium in samples 11-13 heated in argon in a graphite crucible (a) and lithium content in Ir(Li) solid solutions (b).

Download (182KB)
7. Fig. 6. Reflexes of (331) and (420) iridium in samples 14 and 15 heated in BN crucibles.

Download (103KB)
8. Fig. 7. XRF data of sample 16 compared to samples 9 and 10.

Download (90KB)

Copyright (c) 2025 Russian Academy of Sciences