Optimal Disturbances of Stationary and Periodic Solutions to Delay Systems in Mathematical Immunology

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This work is devoted to optimal disturbances of stationary and periodic solutions to systems of delay differential equations, their computation, and use in mathematical immunology. Original methods for computing the stationary and periodic solutions themselves and tracing them along the system parameters, as well as methods for computing optimal disturbances for these solutions are briefly described. The performance of the described methods is demonstrated using the example of the well-known Marchuk–Petrov model of the antiviral immune response with parameter values corresponding to the infection caused by hepatitis B viruses.

About the authors

Yu. M Nechepurenko

Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences

Email: yumnech@yandex.ru
Moscow, Russia

M. Yu Khristichenko

Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences; NRC Kurchatov Institute

Moscow, Russia

G. A Bocharov

Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences; Sechenov FMSMU

Moscow, Russia

D. S Grebennikov

Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences; Sechenov FMSMU

Moscow, Russia

References

  1. Marchuk G.I. Mathematical models in immunology. Springer Verlag, 1983.
  2. Marchuk G.I. Mathematical modelling of immune response in infectious diseases. Springer Science & Business Media, 1997.
  3. Bocharov G.A., Rihan F.A. Numerical modelling in biosciences using delay differential equations // J. Comput. Appl. Math. 2000. V. 125. № 1–2. P. 183–199.
  4. Ferrell Jr J.E. Bistability, bifurcations, and Waddington’s epigenetic landscape // Current Biology. 2012. V. 22. № 11. P. 458–466.
  5. Ghosh S., Matsuoka Y., Asai Y., Hsin K. Y., Kitano H. Software for systems biology: from tools to integrated platforms // Nature Rev. Genetics. 2011. V. 12. № 12. P. 821–832.
  6. Olivier B.G., Swat M.J.,Mone M.J. Modeling and simulation tools: from systems biology to systems medicine // Systems Medicine. 2016. P. 441–463.
  7. Adams B.M., Banks H.T., Davidian M., Kwon H.D., Tran H.T., Wynne S.N., Rosenberg E.S. HIV dynamics: modeling, data analysis, and optimal treatment protocols // J. Comput. Appl. Math. 2005. V. 184. № 1. P. 10–49.
  8. Bocharov G., Kim A., Krasovskii A., Chereshnev V., Glushenkova V., Ivanov A. An extremal shift method for control of HIV infection dynamics // Rus. J. Numeric. Analyse. Math. Model. 2015. V. 30. № 1. P. 11–25.
  9. Hadjiandreou M.M., Conejeros R., Wilson D.I. Long-term HIV dynamics subject to continuous therapy and structured treatment interruptions // Chemie. Engineer. Sci. 2009. V. 64. № 7. P. 1600–1617.
  10. Bocharov G.A., Nechepurenko Yu.M., Khristichenko M.Yu., Grebennikov D.S. Maximum response perturbation-based control of virus infection model with time-delays // Rus. J. Numeric. Analyse. Math. Model. 2017. V. 32. № 5. P. 275–291.
  11. Bocharov G.A., Nechepurenko Yu.M., Khristichenko M.Yu., Grebennikov D.S. Optimal Perturbations of Systems with Delayed Independent Variables for Control of Dynamics of Infectious Diseases Based on Multicomponent Actions // J. Math. Sci. 2021. V. 253. № 5. P. 618–641.
  12. Khristichenko M.Yu., Nechepurenko Yu.M. Optimal disturbances for periodic solutions of time- delay differential equations // Rus. J. Numeric. Analyse. Math. Model. 2022. V. 37. № 4. P. 203–212.
  13. Farrell B.F. Optimal excitation of perturbations in viscous shear flow // Phys. Fluid. 1988. V. 31. № 8. P. 2093–2102.
  14. Andersson P.A., Berggren M., Henningson D.S. Optimal disturbances and bypass transition in boundary layers // Phys. Fluid. 1999. V. 11. № 1. P. 134–150.
  15. Schmid P.J., Henningson D.S. Stability and Transition in Shear Flows. Springer, 2001.
  16. Boiko A.V., Nechepurenko Yu.M., Sadkane M. Fast computation of optimal disturbances for duct flows with a given accuracy // Comput. Math. and Math. Phys. 2010. V. 50. № 11. P. 1914–1924.
  17. Boiko A.V., Ivanov A.V., Kachanov Yu.S., Mischenko D.A., Nechepurenko Yu.M. Excitation of unsteady Gortler vortices by localized surface nonuniformities // Theor. Comput. Fluid Dyn. 2017. V. 31. № 1. P. 67–88.
  18. Ivanov O.O., Ashurov D.A., Gareev L.R., Vedeneev V.V. Non-modal perturbation growth in a laminar jet: An experimental study // J. Fluid Mech. 2023. V. 963.
  19. Bocharov G.A., Nechepurenko Yu.M., Khristichenko M.Yu., Grebennikov D.S. Optimal disturbances of bistable time-delay systems modeling virus infections // Doklady Mathematics. 2018. V. 98. № 1. P. 313–316.
  20. Nechepurenko Yu.M., Khristichenko M.Yu. Computation of optimal disturbances for delay systems // Comput. Math. and Math. Phys. 2019. V. 59. № 5. P. 731–746.
  21. Nechepurenko Yu., Khristichenko M., Grebennikov D., Bocharov G. Bistability analysis of virus infection models with time delays // Discrete & Continuous Dynamical Systems-S. 2020. V. 13. № 9. P. 2385–2401.
  22. Khristichenko M.Yu., Nechepurenko Yu.M. Computation of periodic solutions to models of infectious disease dynamics and immune response // Rus. J. Numeric. Analyse. Math. Model. 2021. V. 36. № 2. P. 87–99.
  23. Khristichenko M.Y., Nechepurenko Yu.M., Grebennikov D.S., Bocharov G.A. Modelling chronic hepatitis B using the Marchuk-Petrov model // J. Phys.: Conf. Ser. 2021. V. 2099. № 1. P. 012036.
  24. Khristichenko M.Yu., Nechepurenko Yu.M., Bocharov G.A. Dependence of optimal disturbances on periodic solution phases for time-delay systems // Rus. J. Numeric. Analyse. Math. Model. 2023. V. 38. № 2. P. 89–98.
  25. Khristichenko M.Yu., Nechepurenko Yu.M., Grebennikov D.S., Bocharov G.A. Numerical study of chronic hepatitis B infection using Marchuk-Petrov model // J. Bioinform. Comput. Biology. 2023. P. 234001.
  26. Khristichenko M.Yu., Nechepurenko Yu.M., Grebennikov D.S., Bocharov G.A. Numerical analysis of stationary solutions of systems with delayed argument in mathematical immunology // J. Math. Sci. 2024. V.283. № 1. P. 125–138.
  27. Khristichenko M.Yu., Nechepurenko Yu.M., Mironov I.V., Grebennikov D.S., Bocharov G.A. Computation and analysis of optimal disturbances of stationary solutions of the hepatitis B dynamics model // Rus. J. Numerical Analysis and Mathematical Modelling. 2024. V. 39. N. 2. P. 83–96.
  28. Khristichenko M.Yu., Mironov I.V., Nechepurenko Yu.M., Grebennikov D.S., Bocharov G.A. Computation and analysis of optimal disturbances of periodic solution of the hepatitis B dynamics model // Rus. J. Numeric. Analyse. Math. Model. 2024. V.39. № 5. P. 289–300.
  29. Bocharov G.A. Modelling the dynamics of LCMV infection in mice: conventional and exhaustive CTL responses // J. Theor. Biology. 1998. V. 192. № 3. P. 283–308.
  30. Bocharov G.A., Marchuk G.I. Applied problems of mathematical modeling in immunology // Comput. Math. and Math. Phys. 2000. V. 40. № 12. P. 1830–1844.
  31. Grebennikov D., Karsonova A., Loguinova M., Casella V., Meyerhans A., Bocharov G. Predicting the Kinetic Coordination of Immune Response Dynamics in SARS-CoV-2 Infection: Implications for Disease Pathogenesis // Mathematics. 2022. V.10. № 17. P. 3154.
  32. Wanner G., Hairer E. Solving ordinary differential equations II. Springer, Berlin, Heidelberg, 1996.
  33. Geddes K.O., Czapor S.R., Labahn G. Algorithms for computer algebra. Springer Science & Business Media, 1992.
  34. Effenberger C. Robust successive computation of eigenpairs for nonlinear eigenvalue problems // SIAM J. Matrix Analys. Appl. 2013. V. 34. № 3. P. 1231–1256.
  35. Dormand J.R., Prince P.J. A family of embedded Runge-Kutta formulae // J. Comput. Appl. Math. 1980. V. 6. № 1. P. 19–26.
  36. Seydel R. Practical bifurcation and stability analysis. Springer Sci. & Business Media, 2009.
  37. Hale J.K. Theory of Functional Differential Equations. Springer-Verlag, 1977.
  38. Stewart G.W. Simultaneous iteration for computing invariant subspaces of non-Hermitian matrices // Numerische Mathematik. 1976. V. 25. № 2. P. 123–136.
  39. Golub G.H., Van Loan C.F. Matrix computations. JHU Press, 2013.
  40. Parlett B. N. The symmetric eigenvalue problem. Soc. Industr. Appl. Math., 1998.
  41. Marchuk G.I., Romanyukha A.A., Bocharov G.A. Mathematical model of antiviral immune response. II. Parameters identification for acute viral hepatitis B // J. Theor. Biology. 1991. V. 151. № 1. P. 41–69.
  42. Марчук Г.И. Избранные труды: в 5 т. / Т.4.: Математическое моделирование в иммунологии и медицине. М.: РАН, 2018.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences