SOME ASPECTS OF NUMERICAL MODELING OF SHOCK-WAVE PROCESSES IN A TWO-PHASE GAS-DISPERSED MIXTURE

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Issues concerning the construction of mathematical models and numerical methods of solving dynamic problems for a two-phase medium consisting of a gas and fine inclusions (particles) are discussed. The particles are assumed to be rigid, incompressible, and nondeformable. As a mathematical model, we use the Rakhmatulin–Nigmatulin nonequilibrium continuum model, which is proved to coincide with the Baer–Nunziato model with nonlocal relaxation. Based on splitting into physical processes, a discrete model is proposed that is reduced at each time step to two strictly hyperbolic conservative subsystems of equations. These subsystems are solved numerically by applying Godunov-type difference schemes based on HLL- and HLLC-type Riemann solvers. The proposed numerical method is verified by computing particle layer transfer, velocity relaxation in an infinite two-phase flow, and the Sedov point blast problem in a gasdispersed medium. In the last case, the results of two-dimensional computations are compared with an exact self-similar solution.

Sobre autores

I. Menshov

National Research Center “Kurchatov Institute” - SRISA; Federal Research Center Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

Email: menshov@kiam.ru
Moscow, Russia; Moscow, Russia

M. Nemtsev

National Research Center “Kurchatov Institute” - SRISA

Email: nemtsev@niisi.ras.ru
Moscow, Russia

V. Markov

National Research Center “Kurchatov Institute” - SRISA; Steklov Mathematical Institute, Russian Academy of Sciences

Email: markov@mi.ras.ru
Moscow, Russia; Moscow, Russia

I. Semenov

National Research Center “Kurchatov Institute” - SRISA

Email: ilyasemv@yandex.ru
Moscow, Russia

Bibliografia

  1. Рахматулин Х.А. Основы газодинамики взаимопроникающих движений сжимаемых сред // Прикладная матем. и механ. 1956.№20. С. 185–191.
  2. Крайко А.Н., Стернин Л.Е. К теории течений двухскоростной сплошной среды с твердыми или жидкими частицами // Прикладная матем. и механ. 1965. Т. 29.№3. С. 418–429.
  3. Нигматулин Р. И. Динамика многофазных сред Т. 1. М.: Наука, 1987. 464 с.
  4. Drew D.A. Continuum modeling of two-phase flows // Theory of Dispersed Multiphase Flow. Academic Press. 1983. P. 173–190.
  5. Хоменко Ю.П., Ищенко А.Н., Касимов В.З. Математическое моделирование внутрибаллистических процессов в ствольных системах. Новосибирск: Издательство СО РАН. 1999.
  6. Baer M.R., Nunziato J.W.Atwo-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials // Internat. Journal of Multiphase Flow. 1986. V. 12.№6. P. 861–889.
  7. Houim R.W., Oran E.S. A multiphase model for compressible granular–gaseous flows: formulation and initial tests // J. Fluid Mech. 2016. V. 789. P. 166–220.
  8. Osiptsov A.N. Development of the full Lagrangian approach for modelling dilute dispersed media flows (a review) // Fluid Dynamics. 2024. V. 59.№1. P. 1–48.
  9. Osiptsov A.N. Lagrangian modeling of dust admixture in gas flow // Astrophys. Space Sci. 2000. V. 274. P. 377–386.
  10. Osiptsov A.N. Investigation of regions of unbounded growth of the particle concentration in disperse flows // Fluid Dynamics. 1984. V. 19.№3. P. 378–385.
  11. Saurel R., Le Martelot S., Tosello R., Lapebie E. Symmetric model of compressible granular mixtures with permeable interfaces // Physics of Fluids. 2014. V. 26.№12.
  12. Dal Maso G., Le Floch P.G., Murat F. Definition and weak stability of a non-conservative product // J. Math. Pures. Appl. 1995. V. 74.№6. P. 483–548.
  13. LeFloch P.G. Hyperbolic Systems of Conservation Laws: The theory of classical and nonclassical shock waves. Basel: Birkh ¨ аuser Verlag. 2002.
  14. Немцев М.Ю. Моделирование динамики двухфазной смеси газа и твердых дисперсных частиц // Матем. моделирование. 2023. Т. 35.№7. С. 97–117.
  15. Коробейников В.П., Марков В.В., Меньшов И.С. Задача о сильном взрыве в запыленном газе // Тр. МИАН СССР. 1984. Т. 163. С. 104–107.
  16. Marble F.E. Dynamics of a gas containing small solid particles // Proc. 5th AGARD Combustion. 1963. P. 175–213.
  17. Немцев М.Ю., Меньшов И.С., Семенов И.В. Численное моделирование динамических процессов в среде мелкодисперсных твердых частиц // Матем. моделирование. 2022. Т. 34.№8. С. 73–96.
  18. Годунов С.К. Разностный метод численного расчета разрывных решений уравнений гидродинамики // Матем. сборник. 1959. Т. 47.№3. С. 271–306.
  19. Einfeldt B., Munz C.D., Roe P.L., Sj ¨ ogreen B. On Godunov-type methods near low densities // J. Comput. Phys. 1991. V. 92.№2. P. 273–295.
  20. Меньшов И.С., Павлухин П.В. Эффективный параллельный метод сквозного счета задач аэродинамики на несвязных декартовых сетках // Ж. вычисл. матем. матем. физ. 2016. Т. 56.№9. С. 1677–1691.
  21. Родионов А.В. Монотонная схема второго порядка аппроксимации для сквозного расчёта неравновесных течений // Ж. вычисл. матем. матем. физ. 1987. Т. 27.№4. С. 585–593.
  22. Borrel M., Montagne J. Numerical study of a non-centered scheme with application to aerodynamics // 7th Computational Physics Conference. 1985. P. 88–97.
  23. Toro E.F., Spruce M., Speares W. Restoration of the contact surface in the HLL-Riemann solver // Shock waves. 1994. V. 4. P. 25–34.
  24. Седов Л.И. Методы подобия и размерности в механике. М.: Физматлит., 1977.
  25. Hindmarsh A.C., Brown P.N., Grant K.E., Lee S.L., Serban R., Shumaker D.E.,Woodward C.S. SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers // ACM TOMS. 2005. V. 31.№3. P. 363–396.
  26. Coleman B.D., Noll W. The thermodynamics of elastic materials with heat conduction and viscosity // Arch Ration Mech Anal. 1963. V. 13.№1. P. 167–178.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025