Mass spectrometric analysis of Xenopus laevis cytoskeletal protein zyxin post-translational modifications
- Authors: Ivanova E.D.1, Zyganshin R.H.2, Parshina E.A.2, Zaraisky A.G.2, Martynova N.Y.2
-
Affiliations:
- Pirogov Russian National Research Medical University
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
- Issue: Vol 51, No 3 (2025)
- Pages: 388-397
- Section: ОБЗОРНАЯ СТАТЬЯ
- URL: https://ta-journal.ru/0132-3423/article/view/686890
- DOI: https://doi.org/10.31857/S0132342325030027
- EDN: https://elibrary.ru/KPZTMP
- ID: 686890
Cite item
Abstract
In addition to its involvement in fundamental cellular processes, zyxin, a LIM-domain protein in the cytoskeletal system, is actively studied because it plays an important role in mechanosensory functions, actin polymerization regulation at cell junctions, as well as gene expression regulation. The disruption of zyxin expression and processing has been associated with carcinogenesis and cardiovascular disease. Zyxin plays an important role in the invasion and metastasis of tumors. The post-translational modification of zyxin in mammals regulates its activity and subcellular location. Given that zyxin is an evolutionarily highly conserved protein, we conducted a search for post-translational modifications of the zyxin homolog from Xenopus laevis using chromatographic mass spectrometry. To identify modified peptides, an enrichment method was employed using co-immunoprecipitation of endogenous zyxin from gastrula-stage embryonic cell lysates. As a result, previously unknown modifications of this protein were discovered, specifically N-terminal acetylation at methionine position 1 and phosphorylation at Ser197 and Ser386. To identify zyxin isoforms with different electrophoretic mobilities, separation was performed using polyacrylamide gel electrophoresis. Zyxin was found in bands with electrophoretic mobilities of 70 and 105 kDa. Thus, this study presents entirely new data on the post-translational modifications of zyxin from X. laevis. Since defects in mechanical signal transduction are associated with developmental disorders, oncogenesis, and metastasis, the study of mechanosensitive protein zyxin modifications and processing on the model organism X. laevis opens up opportunities for diagnostic studies at the molecular level, which can be used in the future to determine drugs use prospective in pharmacology.
Full Text

About the authors
E. D. Ivanova
Pirogov Russian National Research Medical University
Email: martnat61@gmail.com
Russian Federation, ul. Ostrovitianova 1, Moscow, 117997
R. H. Zyganshin
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
Email: martnat61@gmail.com
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997
E. A. Parshina
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
Email: martnat61@gmail.com
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997
A. G. Zaraisky
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
Email: martnat61@gmail.com
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997
N. Y. Martynova
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
Author for correspondence.
Email: martnat61@gmail.com
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997
References
- Beckerle M.C. // Bioessays. 1997. V. 19. V. 949−957. https://doi.org/10.1002/bies.950191104
- Hirata H., Tatsumi H., Sokabe M. // Commun. Integr. Biol. 2008. V. 1. P. 192–195. https://doi.org/10.4161/cib.1.2.7001
- Hirata H., Tatsumi H., Sokabe M. // J. Cell Sci. 2008. V. 121. P. 2795−2804. https://doi.org/10.1242/jcs.030320
- Nix D.A., Beckerle M.C. // J. Cell Biol. 1997. V. 138. P. 1139−1147. https://doi.org/10.1083/jcb.138.5.1139
- Moody J.D., Grange J., Ascione M.P., Boothe D., Bushnell E., Hansen M.D. // Biochem. Biophys. Res. Commun. 2009. V. 378. P. 625–628. https://doi.org/10.1016/j.bbrc.2008.11.100
- Zhou J., Zeng Y., Cui L., Chen X., Stauffer S., Wang Z., Yu F., Lele S.M., Talmon G.A., Black A.R., Chen Y., Dong J. // Proc. Natl. Acad. Sci. USA. 2018. V. 115. P. E6760−E6769. https://doi.org/10.1073/pnas.1800621115
- Zhao Y., Yue S., Zhou X., Guo J., Ma S., Chen Q. // J. Biol. Chem. 2022. V. 298. P. 101776. https://doi.org/10.1016/j.jbc.2022.101776
- Siddiqui M.Q., Badmalia M.D., Patel T.R. // Int. J. Mol. Sci. 2021. V. .22. P. 2647. https://doi.org/10.3390/ijms22052647
- Nix D.A., Fradelizi J., Bockholt S., Menichi B., Louvard D., Friederich E., Beckerle M.C. // J. Biol. Chem. 2001. V. 276. P. 34759−34767. https://doi.org/10.1074/jbc.M102820200
- Uemura A., Nguyen T.N., Steele A.N., Yamada S. // Biophys. J. 2011. V. 101. P. 1069−1075. https://doi.org/10.1016/j.bpj.2011.08.001
- Drees B.E., Andrews K.M., Beckerle M.C. // J. Cell Biol. 1999. V. 147. P. 1549−1560. https://doi.org/10.1083/jcb.147.7.1549
- Li B., Trueb B. // J. Biol. Chem. 2001. V. 276. P. 33328− 33335. https://doi.org/10.1074/jbc.M100789200
- Drees B., Friederich E., Fradelizi J., Louvard D., Beckerle M.C., Golsteyn R.M. // J. Biol. Chem. 2000. V. 275. P. 22503−22511. https://doi.org/10.1074/jbc.M001698200
- Golsteyn R.M., Beckerle M.C., Koay T., Friederich E. // J. Cell. Sci. 1997. V. 110. P. 1893−1906. https://doi.org/10.1242/jcs.110.16.1893
- Smith M.A., Hoffman L.M., Beckerle M.C. // Cell Biol. 2014. V. 24. P. 575−583. https://doi.org/10.1016/j.tcb.2014.04.009
- Martynova N.Y., Parshina E.A., Ermolina L.V., Zaraisky A.G. // Biochem. Biophys. Res. Commun. 2018. V. 504. P. 251–256. https://doi.org/10.1016/j.bbrc.2018.08.164
- Martynova N.Y., Ermolina L.V., Ermakova G.V., Eroshkin F.M., Gyoeva F.K., Baturina N.S., Zaraisky A.G. // Dev. Biol. 2013. V. 380. P. 37−48. https://doi.org/10.1016/j.ydbio.2013.05.005
- Li N., Goodwin R.L., Potts J.D. // Microsc. Microanal. 2013. V. 19. P. 842−854. https://doi.org/10.1017/S1431927613001633
- Hoffman L.M., Nix D.A., Benson B., Boot-Hanford R., Gustafsson E., Jamora C., Menzies A.S., Goh K.L., Jensen C.C., Gertler F.B., Fuchs E., Fässler R., Beckerle M.C. // Mol. Cell Biol. 2003. V. 23. P. 70−79. https://doi.org/10.1128/MCB.23.1.70−79.2003
- Rauskolb C., Pan G., Reddy B.V., Oh H., Irvine K.D. // PLoS Biol. 2011. V. 9. P. e1000624. https://doi.org/10.1371/journal.pbio.1000624
- Gaspar P., Holder M.V., Aerne B.L., Janody F., Tapon N. // Curr. Biol. 2015. V. 25. P. 679−689. https://doi.org/10.1016/j.cub.2015.01.010
- Martynova N.Y., Eroshkin F.M., Ermolina L.V., Ermakova G.V., Korotaeva A.L, Smurova K.M., Gyoeva F.K., Zaraisky A.G. // Dev. Dyn. 2008. V. 237. P. 736−749. https://doi.org/10.1002/dvdy.21471
- Martynova N.U., Ermolina L.V., Eroshkin F.M., Zarayskiy A.G. // Bioorg. Khim. 2015. V. 41. P. 744− 748. https://doi.org/10.1134/s1068162015060102
- Parshina E.A., Eroshkin F.M., Оrlov E.E., Gyoeva F.K., Shokhina A.G., Staroverov D.B., Belousov V.V., Zhigalova N.A., Prokhortchouk E.B., Zaraisky A.G., Martynova N.Y. // Cell Rep. 2020. V. 33. P. 108396. https://doi.org/10.1016/j.celrep.2020.108396
- Ivanova E.D., Parshina E.A., Zaraisky A.G. Martynova N.Y. // Russ. J. Bioorg. Chem. 2024. V. 50. P. 723–732. https://doi.org/10.1134/S1068162024030026
- Aebersold R., Mann M. // Nature. 2003. V. 422. P. 198– 207. https://doi.org/10.1038/nature01511
- Mann M., Wilm M. // Anal. Chem. 1994. V. 66. P. 4390− 4399. https://doi.org/10.1021/ac00096a002
- Eng J.K., Searle B.C., Clauser K.R., Tabb D.L. // Mol. Cell Proteomics. 2011. V. 10. P. R111.009522. https://doi.org/10.1074/mcp.R111.009522
- Mann M., Ong S.E., Grønborg M., Steen H., Jensen O.N., Pandey A. // Trends Biotechnol. 2002. V. 20. P. 261−268. https://doi.org/10.1016/s0167−7799(02)01944−3
- Groen A., Thomas L., Lilley K., Marondedze C. // Methods Mol. Biol. 2013. V. 1016. P. 121−137. https://doi.org/10.1007/978-1-62703-441-8_9
- Maynard J.C., Chalkley R.J. // Mol. Cell Proteomics. 2021. V. 20. P. 100031. https://doi.org/10.1074/mcp.R120.002206
- Shevchenko A., Tomas H., Havlis J., Olsen J.V., Mann M. // Nat. Protoc. 2006. V. 1. P. 2856−2860. https://doi.org/10.1038/nprot.2006.468
- Ma B., Zhang K., Hendrie C., Liang C., Li M., DohertyKirby A., Lajoie G. // Rapid Commun. Mass Spectrom. 2003. V. 17. P. 2337−2342. https://doi.org/10.1002/rcm.1196
- Rappsilber J., Mann M., Ishihama Y. // Nat. Protoc. 2007. V. 2. P. 1896−1906. https://doi.org/10.1038/nprot.2007.261
- Nguyen K.T., Mun S.H., Lee C.S., Hwang C.S. // Exp. Mol. Med. 2018. V. 50. P. 1−8. https://doi.org/10.1038/s12276-018-0097-y
- Arnaudo N., Fernández I.S., McLaughlin S.H., PeakChew S.Y., Rhodes D., Martino F. // Nat. Struct. Mol. Biol. 2013. V. 20. P. 1119−1121. https://doi.org/10.1038/nsmb.2641
- Fujita Y., Yamaguchi A., Hata K., Endo M., Yamaguchi N., Yamashita T. // BMC Cell Biol. 2009. V. 27. P. 10− 16. https://doi.org/10.1186/1471-2121-10-6
Supplementary files
