A method for increasing the efficiency of selection of aptamers to cellular receptors
- Авторлар: Kuznetsova V.Е.1, Lebedev T.D.1, Shershov V.Е.1, Shtylev G.F.1, Shishkin I.Y.1, Miftahov R.A.1, Butvilovskaya V.I.1, Grechishnikova I.V.1, Zasedateleva О.А.1, Chudinov А.V.1
-
Мекемелер:
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
- Шығарылым: Том 51, № 3 (2025)
- Беттер: 451-460
- Бөлім: ОБЗОРНАЯ СТАТЬЯ
- URL: https://ta-journal.ru/0132-3423/article/view/686963
- DOI: https://doi.org/10.31857/S0132342325030081
- EDN: https://elibrary.ru/KQMRJH
- ID: 686963
Дәйексөз келтіру
Аннотация
A method has been proposed to increase the efficiency of selection of aptamers to cellular receptors by the cell-Selex method, in particular to the receptor tyrosine kinase c-KIT. The use of Tween 20 in buffer solutions in concentrations not exceeding 0.01%, as well as trypsinolysis of surface proteins at the stage of elution of the combinatorial library of oligonucleotides bound to the cell surface, led to an increase in the specificity of aptamers and a decrease in nonspecific sorption according to the results of fluorescence microscopy, thermofluorimetric analysis and high-precision sequencing.
Негізгі сөздер
Толық мәтін

Авторлар туралы
V. Kuznetsova
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: kuzneimb@gmail.com
Ресей, ul. Vavilova 32, Moscow, 119991
T. Lebedev
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: kuzneimb@gmail.com
Ресей, ul. Vavilova 32, Moscow, 119991
V. Shershov
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: kuzneimb@gmail.com
Ресей, ul. Vavilova 32, Moscow, 119991
G. Shtylev
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: kuzneimb@gmail.com
Ресей, ul. Vavilova 32, Moscow, 119991
I. Shishkin
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: kuzneimb@gmail.com
Ресей, ul. Vavilova 32, Moscow, 119991
R. Miftahov
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: kuzneimb@gmail.com
Ресей, ul. Vavilova 32, Moscow, 119991
V. Butvilovskaya
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: kuzneimb@gmail.com
Ресей, ul. Vavilova 32, Moscow, 119991
I. Grechishnikova
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: kuzneimb@gmail.com
Ресей, ul. Vavilova 32, Moscow, 119991
О. Zasedateleva
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: kuzneimb@gmail.com
Ресей, ul. Vavilova 32, Moscow, 119991
А. Chudinov
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: kuzneimb@gmail.com
Ресей, ul. Vavilova 32, Moscow, 119991
Әдебиет тізімі
- Liu H., Chen X., Focia P., He X. // EMBO J. 2007. V. 26. P. 891–901. https://doi.org/10.1038/sj.emboj.7601545
- Camorani S., Crescenzi E., Fedele M., Cerchia L. // Biochim. Biophys. Acta Rev. Cancer. 2018. V. 1869. P. 263–277. https://doi.org/10.1016/j.bbcan.2018.03.003
- Рулина А.В., Спирин П.В., Прасолов В.С. // Усп. биол. химии. 2010. T. 50. C. 349–386.
- Bibi S., Langenfeld F., Jeanningros S., Brenet F., Soucie E., Hermine O., Damaj G., Dubreuil P., Arock M. // Immunol. Allergy Clin. North Am. 2014. V. 34. P. 239–262. https://doi.org/10.1016/j.iac.2014.01.009
- Kövecsi A., Jung I., Szentirmay Z., Bara T., Bara T., Jr., Popa D., Gurzu S. // Oncotarget. 2017. V. 8. P. 55950– 55957. https://doi.org/10.18632/oncotarget.19116
- Sankhala K.K. // Expert Opin. Investig. Drugs. 2017. V. 26. P. 427–443. https://doi.org/10.1080/13543784.2017.1303045
- Hicke B.J., Marion C., Chang Y.-F., Gould T., Lynott C.K., Parma D., Schmidt P.G., Warren S. // J. Biol. Chem. 2001. V. 276. P. 48644–48654. https://doi.org/10.1074/jbc.m104651200
- Zhang Y., Chen Y., Han D., Ocsoy I., Tan W. // Bioanalysis. 2010. V. 2. P. 907–918. https://doi.org/10.4155/bio.10.46
- Wang C., Zhang M., Yang G., Zhang D., Ding H., Wang H., Fan M, Shen B., Shao N. // J. Biotechnol. 2003.V. 102. P. 15–22. https://doi.org/10.1016/s0168-1656(02)00360-7
- Cerhia L., Hamm J., Libri D., Tavitian B., Franciscis B. // FEBS Lett. 2002. V. 528. P. 12–16. https://doi.org/10.1016/s0014-5793(02)03275-1
- Blank M., Weinschenk T., Priemer M., Schluesener H. // J. Biol. Chem. 2001. V. 276. P. 16464–16468. https://doi.org/10.1074/jbc.m100347200
- Daniels D.A., Chen H., Hicke B.J., Swiderek K.M., Gold L. // Proc. Natl. Acad. Sci. USA. 2003. V. 100. P. 15416–15421. https://doi.org/10.1073/pnas.2136683100
- Laos R., Thomson J.M., Benner S.A. // Front. Microbiol. 2014. V. 5. P. 565. https://doi.org/10.3389/fmicb.2014.00565
- Tuerk C., Gold L. // Science. 1990. V. 249. P. 505–510. https://doi.org/10.1126/SCIENCE.2200121
- Ellington A.D., Szostak J.W. // Nature. 1990. V. 346. P. 818–822. https://doi.org/10.1038/346818a0
- Zhu G., Zhang H., Jacobson O., Wang Z., Chen H., Yang X., Niu G., Chen X. // Bioconj. Chem. 2017. V. 28. P. 1068–1075. https://doi.org/10.1021/acs.bioconjchem.6b00746
- Wang D.L., Songc Y.L., Zhu Z., Li X.L., Zou Y., Yang H.T., Wang J.J., Yao P.S., Pan R.J., Yang C.J., Kang D.Z. // Biochem. Biophys. Res. Commun. 2014. V. 453. P. 681–685. https://doi.org/10.1016/j.bbrc.2014.09.023
- Hollenstein M. // Molecules. 2012. V. 17. P. 13569– 13591. https://doi.org/10.3390/molecules171113569
- Gold L., Ayers D., Bertino J, Bock C., Bock A., Brody E.N., Carter J., Dalby A.B., Eaton B.E., Fitzwater T., Flather D., Forbes A., Foreman T., Fowler C., Gawande B., Goss M., Gunn M., Gupta S., Halladay D., Heil J., Heilig J., Hicke B., Husar G., Janjic N., Jarvis T., Jennings S., Katilius E., Keeney T.R., Kim N., Koch T.H., Kraemer S., Kroiss L., Le N., Levine D., Lindsey W., Lollo B., Mayfield W., Mehan M., Mehler R., Nelson S.K., Nelson M., Nieuwlandt D., Nikrad M., Ochsner U., Ostroff R.M., Otis M., Parker T., Pietrasiewicz S., Resnicow D.I., Rohloff J., Sanders G., Sattin S., Schneider D., Singer B., Stanton M., Sterkel A., Stewart A., Stratford S., Vaught J.D., Vrkljan M., Walker J.J., Watrobka M., Waugh S., Weiss A., Wilcox S.K., Wolfson A., Wolk S.K., Zhang C., Zichi D. // PLoS One. 2010. V. 5. P. e15004. https://doi.org/10.1371/journal.pone.0015004
- Sefah K., Shangguan D., Xiong X., O’Donoghue M.B., Tan W. // Nat. Protoc. 2010. V. 5. P. 1169–1185. https://doi.org/10.1038/nprot.2010.66
- Вагапова Э.Р., Лебедев Т.Д., Попенко В.И., Леонова О.Г., Спирин П.В., Прасолов В.С. // Act. Nat. 2020. Т. 12. C. 51–55. https://doi.org/10.32607/actanaturae.10938
- Lebedev T.D., Vagapova E.R., Popenko V.I., Leonova O.G., Spirin P.V., Prassolov V.S. // Front. Oncol. 2019. V. 9. P. 1046. https://doi.org/10.3389/fonc.2019.01046
- Meyer S., Maufort J.P., Nie J., Stewart R., McIntosh B.E., Conti L.R., Ahmad K.M., Soh H.T., Thomson J.A. // PLoS One. 2013. V. 8. P. e71798. https://doi.org/10.1371/journal.pone.0071798
- Chudinov A.V., Shershov V.E., Pavlov A.S., Volkova O.S., Kuznetsova V.E., Zasedatelev A.S., Lapa S.A. // Russ. J. Bioorg. Chem. 2020. V. 46. P. 856–858. https://doi.org/10.1134/S1068162020050064
- Vasiliskov V.A., Lapa S.A., Kuznetsova V.E., Surzhikov S.A., Shershov V.E., Spitsyn M.A., Guseinov T.O., Miftahov R.A., Zasedateleva O.A., Lisitsa A.V., Radko S.P., Zasedatelev A.S., Timofeev E.N., Chudinov A.V. // Russ. J. Bioorg. Chem. 2019. V. 45. P. 221–223. https://doi.org/10.1134/s1068162019030063
- Chudinov A.V., Kiseleva Y.Y., Kuznetsova V.E., Shershov V.E., Spitsyn M.A., Guseinov T.O., Lapa S.A., Timofeev E.N., Archakov A.I., Lisitsa A.V., Radko S.P., Zasedatelevet A.S. // Mol Biol. 2017. V. 51. P. 474–482. https://doi.org/10.1134/S0026893317030025
- Lapa S.A., Pavlov A.S., Kuznetsova V.E., Shershov V.E., Spitsyn M.A., Guseinov T.O., Radko S.P., Zasedatelev A.S., Lisitsa A.V., Chudinov A.V. // Mol. Biol. 2019. V. 53. P. 460–469. https://doi.org/10.1134/S0026893319030099
- Lyu Y., Chen G., Shangguan D., Zhang L., Wan S., Wu Y., Zhang H., Duan L., Liu C., You M., Wang J., Tan W. // Theranostics. 2016. V. 6. P. 1440–1452. https://doi.org/10.7150/thno.15666
- Cerchia L., Duconge F., Pestourie C., Boulay J., Aissouni Y. // PLoS Biol. 2005. V. 3. P. e123. https://doi.org/10.1371/journal.pbio.0030123
- McKeague M., Derosa M.C. // J. Nucleic Acids. 2012. V. 2012. P. 748913. https://doi.org/10.1155/2012/748913
- Ouellet E., Foley J.H., Conway E.M., Haynes C. // Biotechnol. Bioeng. 2015. V. 112. P. 1506–1522. https://doi.org/10.1002/bit.25581
- Kissmann A.K., Bolotnikov G., Li R., Müller F., Xing H., Krämer M., Gottschalk K.E., Andersson J., Weil T., Rosenau F. // Appl. Microbiol. Biotechnol. 2024. V. 108. P. 284. https://doi.org/10.1007/s00253-024-13085-7
- Zhang H.L., Lv C., Li Z.H., Jiang S., Cai D., Liu S.S., Wang T., Zhang K.H. // Front. Chem. 2023. V. 11. P. 1144347. https://doi.org/10.3389/fchem.2023.1144347
- Ouellet E, Lagally E.T., Cheung K.C., Haynes C.A. // Biotechnology. 2014. V. 111. P. 2265–2279. https://doi.org/10.1002/bit.25294
- Schutze T., Arndt P., Menger M., Wochner A., Vingron M., Erdmann V., Lehrach H., Kaps Ch., Glokler J. // Nucleic Acids Res. 2009. V. 38. P. e23. https://doi.org/10.1371/journal.pone.0029604
- Pearson K., Doherty C., Zhang D., Becker N.A., Maher L.J. // Anal. Biochem. 2022. V. 650. P. 114712. https://doi.org/10.1016/j.ab.2022.114712
- Raber H.F., Kubiczek D.H., Bodenberger N., Kissmann A.K., D’souza D., Xing H., Mayer D., Xu P., Knippschild U., Spellerberg B., Weil T., Rosenau F. // Int. J. Mol. Sci. 2021. V. 22. P. 10425. https://doi.org/10.3390/ijms221910425
- Catuogno S., Esposito C.L. // Biomedicines. 2017. V. 5. P. 49. https://doi.org/10.3390/biomedicines5030049
- Flanagan Sh.P., Fogel R., Edkins A.L., Ho L., Limson J. // Anal. Methods. 2021. V. 13. P. 1191–1203. https://doi.org/10.1039/d0ay01878c
- Shangguan D., Meng L., Cao Z.C., Xiao Z., Fang X., Li Y., Cardona D., Witek R.P., Liu C., Tan W. // Anal. Chem. 2008. V. 80. P. 721–728. https://doi.org/10.1021/ac701962v
- Cherney L.T., Obrecht N.M., Krylov S.N. // Anal. Chem. 2013. V. 85. P. 4157–4164. https://doi.org/10.1021/ac400385v
- Mayer G., Ahmed M.S., Dolf A. // Nat. Protoc. 2010. V. 5. P. 1993–2004. https://doi.org/10.1038/nprot.2010.163
- Xiong L., Xia M., Wang Q., Meng Z., Zhang J., Yu G., Dong Z., Lu Y., Sun Y. // Biotechnol. Lett. 2022. V. 44. P. 777–786. https://doi.org/10.1007/s10529-022-03252-z
- Hua T., Zhang X., Tang B., Chang Ch., Liu G., Feng L., Yu Y., Zhang D., Hou J. // BMC Vet. Res. 2018. V. 14. P. 138. https://doi.org/10.1186/s12917-018-1457-5
- Zhang Y., Wu Y., Zheng H., Xi H., Ye T., Chan C.Y., Kwok C.K. // Anal. Chem. 2021. V. 93. P. 5744–5753. https://doi.org/10.1021/acs.analchem.0c04862
- Замай А.С., Замай Г.С., Коловская О.С., Замай Т.Н., Березовский М.В. // Патент RU2518368С1, 2012.
- Zhang K., Sefah K., Tang L., Zhao Z., Zhu G., Ye M., Sun W., Goodison S., Tan W. // ChemMedChem. 2012. V. 7. P. 79–84. https://doi.org/10.1002/cmdc.201100457
- Gu L., Yan W., Liu S., Ren W., Lyu M., Wang S. // Anal. Biochem. 2018. V. 561–562. P. 89–95. https://doi.org/10.1016/j.ab.2018.09.004
Қосымша файлдар
