Spectral model for calculation of radiation characteristics of shock heated gas
- Autores: Bykova N.G.1, Kusov A.L.1, Kozlov P.V.1, Gerasimov G.Y.1, Levashov V.Y.1, Zabelinsky I.E.1
-
Afiliações:
- Institute of Mechanics, Lomonosov Moscow State University
- Edição: Volume 43, Nº 6 (2024)
- Páginas: 33-40
- Seção: Combustion, explosion and shock waves
- URL: https://ta-journal.ru/0207-401X/article/view/674934
- DOI: https://doi.org/10.31857/S0207401X24060042
- ID: 674934
Citar
Resumo
The extended version of the previously developed computational procedure SPECTRUM is presented, which allows to calculate the radiation characteristics of a shock-heated gas, taking into account the decrease in the radiation intensity in an absorbing medium. The procedure is based on line-by-line calculation of the emission and absorption spectra of atoms and molecules that make up the gas mixture under study. When calculating the emission spectra of atoms and molecules, the values of spectroscopic constants were taken from known databases. The results of calculating the time-integrated spectral characteristics of shock-heated air are compared with the available experimental data obtained in the ultraviolet, visible, and infrared regions of the spectrum.
Palavras-chave
Texto integral

Sobre autores
N. Bykova
Institute of Mechanics, Lomonosov Moscow State University
Email: levashovvy@imec.msu.ru
Rússia, Moscow
A. Kusov
Institute of Mechanics, Lomonosov Moscow State University
Email: levashovvy@imec.msu.ru
Rússia, Moscow
P. Kozlov
Institute of Mechanics, Lomonosov Moscow State University
Email: levashovvy@imec.msu.ru
Rússia, Moscow
G. Gerasimov
Institute of Mechanics, Lomonosov Moscow State University
Email: levashovvy@imec.msu.ru
Rússia, Moscow
V. Levashov
Institute of Mechanics, Lomonosov Moscow State University
Autor responsável pela correspondência
Email: vyl69@mail.ru
Rússia, Moscow
I. Zabelinsky
Institute of Mechanics, Lomonosov Moscow State University
Email: levashovvy@imec.msu.ru
Rússia, Moscow
Bibliografia
- Uyanna O., Najafi H. // Acta Astronaut. 2020. V. 176. P. 341.
- Zhao Y., Huang H. // Ibid. 2020. V. 169. P. 84.
- Surzhikov S.T. // Rus. J. Phys. Chem. B 2010. V. 4. P. 613.
- Reyner P. // Prog. Aerospace Sci. 2016. V. 85. P. 1.
- Gu S., Olivier H. // Prog. Aerospace Sci. 2020. V. 113. No. 100607.
- Zabelinskii I.E., Kozlov P.V., Akimov Yu.V., Bykoba N.G., Gerasimov G.Ya., Tunik Yu.V., Levashov V.Yu. // Rus. J. Phys. Chem. B 2021. V. 15. P. 963.
- Gerasimov G.Ya., Kozlov P.V., Zabelinsky I.E., Bykova N.G., Levashov V.Yu. // Rus. J. Phys. Chem. B 2022. V. 16. P. 642.
- Whiting E., Park C., Liu Y., Arnold J., Paterson J. // NASA Ref. Publ. 1996. № 1389.
- Johnston C.O., Hollis B.R., Sutton K. // J. Spacecraft Rockets. 2008. V. 45. № 5. P. 865.
- Kumar N., Bansal A. // Acta Astronaut. 2023. V. 205. P. 172.
- Johnston C.O., Hollis B.R., Sutton K. // J. Spacecr. Rockets. 2008. V. 45. P. 879.
- Lemal A., Jacobs C.M., Perrin M.-Y. et al. // J. Thermophys. Heat Transf. 2016. V. 30. P. 197.
- Karpuzcu I.T., Jouffray M.P., Levin D.A. // J. Thermophys. Heat Transf. 2022. V. 36. P. 982.
- Du Y.W., Sun S.R., Tan M.J et al. // Acta Astronaut. 2022. V. 193. P. 521.
- Dikalyuk A.S., Surzhikov S.T., Kozlov P.V., Shatalov O.P., Romanenko Y.V. AIAA Paper. 2013. № 2013–2505.
- Umanskii S.Y., Adamson S.O., Vetchinkin A.S., Deminskii M.A., Olkhov O.A., Chaikina Y.A., Shushin A.I., Golubkov M.G. // Rus. J. Phys. Chem. B 2023. V. 7. P. 346.
- Zhu T., Li Z., Levin D.A. // J. Thermophys. Heat Transfer. 2014. V. 28. P. 623.
- Gimelshein S.F., Wysong I.J., Fangman A.J. et al. // Ibid. 2022. V. 36. P. 870.
- Kozlov P.V., Kusov A.L., Bykova N.G., Zabelinskii I.E., Levashov V.Yu., Gerasimov G.Ya. // Rus. J. Phys. Chem. 2023. V. 17. P. 456.
- Bykova N.G., Kuznetsova L.A. // Opt. Spectrosc. 2008. V. 105. P. 668.
- Wayne R.P. Principles and Applications of Photochemistry. Oxford University Press, Oxford, 1088.
- Nordebo S. // J. Quant. Spectrosc. Radiat. Transf. 2021. V. 270. № 107715.
- Surzhikov S.T. AIAA Paper. 2002. № 2002–2898.
- NIST Atomic Spectra Database, Ver. 5.10. Gaithersburg: NIST, 2021.
- https://doi.org/10.18434/T4W30F
- Arnold J.O., Whiting E.E., Lyle G.C. // J. Quant. Spectrosc. Radiat. Transf. 1969. V. 9. P. 775.
- Kuznetsova L.A., Kuzmenko N.E., Kuzyakov Yu.Ya., Plastinin Yu.A. Probabilities of optical transitions of diatomic molecules. Nauka, Moscow, 1980.
- Kuznetsova L.A., Surzhikov S.T. // Math. Model. 1998. V. 36. № 5. P. 15.
- Glushko V.P. (Ed.). Thermodynamic Properties of Individual Substances, V. II. Nauka, Moscow, 1979.
- Kozlov P.V., Zabelinsky I.E., Bykova N.G., Gerasimov G.Ya., Levashov V.Yu. // Fluid Dynamics. 2022. V. 57. P. 780.
- Kozlov P.V., Zabelinsky I.E., Bykova N.G., Gerasimov G.Ya., Levashov V.Yu. // Fluid Dynamics. 2022. V. 58. P. 573.
- Surzhikov S.T. // Phys.-Chem. Kinet. Gaz. Dynam. 2022. V. 23. № 4. P. 1.
- Johnston C.O. AIAA Paper. 2008. № 2008–1245.
Arquivos suplementares
