Study of ablative properties of carbon thermal protection materials

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The current state of research on the study of the ablative properties of carbon thermal protection materials for spacecraft is considered in relation to the conditions of spacecraft motion in the Earth’s atmosphere. Various carbon/polymer composites, which are the main and most versatile class of thermal protection materials due to their ability to adapt to various thermal loads, are analyzed. A critical review of the physicochemical processes occurring during ablation of carbon-containing composites, as well as methods for their modeling, is made. An analysis of experimental facilities used to study the ablative properties of carbon thermal protection materials is carried out, as well as their operating principles, potential use and limitations.

全文:

受限制的访问

作者简介

G. Gerasimov

Lomonosov Moscow State University, Moscow

Email: vyl69@mail.ru

Institute of Mechanics

俄罗斯联邦, Москва

V. Levashov

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: vyl69@mail.ru

Institute of Mechanics

俄罗斯联邦, Moscow

P. Kozlov

Lomonosov Moscow State University

Email: vyl69@mail.ru

Institute of Mechanics

俄罗斯联邦, Moscow

N. Bykova

Lomonosov Moscow State University

Email: vyl69@mail.ru

Institute of Mechanics

俄罗斯联邦, Moscow

I. Zabelinsky

Lomonosov Moscow State University

Email: vyl69@mail.ru

Institute of Mechanics

俄罗斯联邦, Moscow

参考

  1. O. Uyanna, H. Najafi. Acta Astronaut. 176, 341 (2020). https://doi.org/10.1016/j.actaastro.2020.06.047
  2. A.V. Efremov, E.V. Efremov, M.S. Tiaglik et al. Ibid. 204, 900 (2023). https://doi.org/10.1016/j.actaastro.2022.10.056
  3. A.M. Brandis and B.A. Cruden et al. AIAA Paper 2017-1145 (2017). https://doi.org/10.2514/6.2017-1145
  4. G.Ya. Gerasimov, P.V. Kozlov, I.E. Zabelinsky, N.G. Bykova, V.Yu. Levashov. Russ. J. Phys. Chem. B 16, 642 (2022). https://doi.org/10.1134/S1990793122040194
  5. N.G. Bykova, I.E. Zabelinsky, P.V. Kozlov, G.Ya. Gerasimov, V.Yu. Levashov. Russ. J. Phys. Chem. B 17, 1152 (2023). https://doi.org/10.1134/S1990793123050184
  6. S.T. Surzhikov. Russ. J. Phys. Chem. B 4, 613 (2010). https://doi.org/10.1134/S1990793110040123
  7. Y. Zhao, H. Huang. Acta Astronaut. 169, 84 (2020). https://doi.org/10.1016/j.actaastro.2020.01.002
  8. J.H. Koo, D.W.H. Ho, M.C. Bruns, O.A. Ezekoye. AIAA Paper 2007-2131 (2007). https://doi.org/10.2514/6.2007-2131
  9. C.V. Kumar, B. Kandasubramanian. Ind. Eng. Chem. Res. 58, 22663 (2019). https://doi.org/10.1021/acs.iecr.9b04625
  10. F. Buffenoir, C. Zeppa, T. Pichon, F. Girard. Acta Astronaut. 124, 85 (2016). https://doi.org/10.1016/j.actaastro.2016.02.010
  11. J. Barcena, I. Garmendia, K. Triantou et al. Ibid. 134, 85 (2017). https://doi.org/10.1016/j.actaastro.2017.01.045
  12. W. Li, Z. Zhang, Z. Jiang et al. Aerosp. Sci. Technol. 126, 107647 (2022). https://doi.org/10.1016/j.ast.2022.107647
  13. Z. Zhao, K. Li, G. Kou, W. Li. Corros. Sci. 206, 110496 (2022). https://doi.org/10.1016/j.corsci.2022.110496
  14. P.F. Barbante. J. Thermophys. Heat Transf. 20, 493 (2006). https://doi.org/10.2514/1.17185
  15. F. Liu, J. Yang, X. Xiao et al. Meas. Sci. Technol. 33, 095004 (2022). https://doi.org/10.1088/1361-6501/ac6b17
  16. A. Fagnani, B. Helber, A. Hubin, O. Chazot. Ibid. 34, 075401 (2023). https://doi.org/10.1088/1361-6501/acc67c
  17. H. Kihara, M. Hatano, N. Nakiyama, K. Abe, M. Nishida. Trans. Japan Soc. Aero. Space Sci. 49 (164), 65 (2006). https://doi.org/10.2322/tjsass.49.65
  18. S.C.C. Bailey, D. Bauer, F. Panerai et al. Exp. Therm. Fluid Sci. 93, 319 (2018). https://doi.org/10.1016/j.expthermflusci.2018.01.005
  19. B.M. Ringel, H.J. Boesch, S. Oruganti et al. AIAA Paper 2024-0649 (2016). https://doi.org/10.2514/6.2024-0649
  20. G. Radhakrishnan, P.M. Adams, L.S. Bernstein. J. Appl. Phys. 134, 013303 (2023). https://doi.org/10.1063/5.0153331
  21. C. Park, D.W. Bogdanoff. J. Thermophys. Heat Transf. 20, 487 (2006). https://doi.org/10.2514/1.15743
  22. M.G. D’Souza, T.N. Eichmann, D.F. Potter et al. AIAA J. 48, 1557 (2010). https://doi.org/10.2514/1.J050207
  23. M. Bleilebens, H. Olivier. Shock Waves 15, 301 (2006). https://doi.org/10.1007/s00193-006-0025-2
  24. N.N. Mansour, F. Panerai, J. Lachaud, T. Magin. Annu. Rev. Fluid Mech. 56, 549 (2024). https://doi.org/10.1146/annurev-fluid-030322-010557
  25. F.S. Milos, Y.-K. Chen, J. Spacecr. Rockets 50, 137 (2013). https://doi.org/10.2514/1.A32302
  26. W. Chen. Int. J. Heat Mass Transf. 95, 720 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.031
  27. Y.Z. Huang, Yin Yu, Y.L. Hu, Z.Y. Yao, Dan Wu. Acta Astronaut. 214, 1 (2024). https://doi.org/10.1016/j.actaastro.2023.10.017
  28. B. Lopez, M. Lino da Silva. AIAA Paper 2016-4025 (2016). https://doi.org/10.2514/6.2016-4025
  29. I. Sohn, Z. Li, D.A. Levin. Ibid. 2011-3758 (2011). https://doi.org/10.2514/6.2011-3758
  30. J. Yang, J. Ge, Z. Jing, T. Shang, J. Liang. Int. J. Heat Mass Transf. 228, 125658 (2024). https://doi.org/10.1016/j.ijheatmasstransfer.2024.125658
  31. A.L. Zibitsker, J.A. McQuaid, R. Fu, C. Brehm, A. Martin. AIAA Paper 2024-1479 (2024). https://doi.org/10.2514/6.2024-1479
  32. G.M. Gunyaev, M.Ya. Gofin. Aviation materials and technologies. S1, 62 (2013).
  33. A.I. Nikolaev, Fine Chem. Technol. 10 (2), 61 (2015).
  34. N.V. Chukanov, T.S. Larikova, N.N. Dremova et al. Russ. J. Phys. Chem. B 14, 323 (2020). https://doi.org/10.1134/S1990793120020037
  35. M.I. Ikim, E.Y. Spiridonova, V.F. Gromov, G.N. Gerasimov, L.I. Trakhtenberg. Russ. J. Phys. Chem. B 18, 283 (2024). https://doi.org/10.1134/S199079312401010X
  36. Yu.V. Sokolkin, A.M. Votinov, A.A. Tashkinov, A.M. Postnykh, A.A. Chekalkin. Technology and design of carbon-carbon composites and structures (Fizmatlit, Moscow, 1996).
  37. Yu. I. Dmitrienko. Mechanics of composite structures at high temperatures (Fizmatlit, Moscow, 2019).
  38. F.R. Jones. Composites Science, Technology and Engineering (Univ. Press, Cambridge, 2022).
  39. S.M. Johnson. Engineering Ceramics: Current Status and Future Prospects. Ed. by T. Ohji, M. Singh (Wiley, New York, 2015). P. 224-243. https://doi.org/10.1002/9781119100430.ch12
  40. M. Natali, J.M. Kenny, L. Torre L. Prog. Mater. Sci. 84, 192 (2016). https://doi.org/10.1016/j.pmatsci.2016.08.003
  41. R.K. Chinnaraj, Y.C. Kim, S.M. Choi. Materials 16, 5929 (2023). https://doi.org/10.3390/ma16175929
  42. B. Behrens, M. Müller. Acta Astronaut. 55, 529 (2004). https://doi.org/10.1016/j.actaastro.2004.05.034
  43. S.V. Reznik, A.F. Kolesnikov, P.V. Prosuntsov, A.N. Gordeev, K.V. Mikhalovskii. J. Eng. Phys. Thermophys. 92, 306 (2019). https://doi.org/10.1007/s10891-019-01934-6
  44. L. Paglia, V. Genova, J. Tirillò et al. Appl. Compos. Mater. 28, 1675 (2021). https://doi.org/10.1007/s10443-021-09925-8
  45. P. Reynier. Acta Astronaut. 83, 175 (2013). https://doi.org/10.1016/j.actaastro.2012.06.016
  46. J. Lachaud, Y. Aspa., L. Vignoles. J. Heat Mass Transf. 51, 2614 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2008.01.008
  47. S.K. Sahoo, S. Mohanty, S.K. Nayak. Prog. Org. Coat. 88, 263 (2015). https://doi.org/10.1016/j.porgcoat.2015.07.012
  48. S. Shi, B. Lei, M. Li et al. Ibid. 143, 105609 (2020). https://doi.org/10.1016/j.porgcoat.2020.105609
  49. G. Pulci, J. Tirillò, F. Marra et al. Composites A41, 1483 (2010). https://doi.org/10.1016/j.compositesa.2010.06.010
  50. I. Srikanth, N. Padmavathi, S. Kumar et al. Compos. Sci. Technol. 80, 1 (2013). https://doi.org/10.1016/j.compscitech.2013.03.005
  51. L. Wang, J. Li, K. Li, Y. Wang. C. Ma, Chinese J. Aeronaut. 37, 471 (2024). https://doi.org/10.1016/j.cja.2023.11.005
  52. R.R.P. Kuppusamy, S. Neogi, S. Mohanta et al. Adv. Mater. Sci. Eng. 2022, 7808587 (2022). https://doi.org/10.1155/2022/7808587
  53. A. Kumar, C. Ranjan, K. Kumar et al. Polymers 16, 1461 (2024). https://doi.org/10.3390/polym16111461
  54. N.G. Bykova, I.E. Zabelinskii, P.V. Kozlov, G.Ya. Gerasimov, V.Yu. Levashov. Russ. J. Phys. Chem. B 17, 463 (2023). https://doi.org/10.1134/S1990793123020227
  55. G.Ya. Gerasimov, V.V. Khaskhachikh, G.A. Sychev, O.M. Larina, V.M. Zaichenko. Russ. J. Phys. Chem. B 16, 1067 (2022). https://doi.org/10.1134/S1990793122060045
  56. B. Helber, A. Turchi, T.E. Magin. Carbon 125, 582 (2017). https://doi.org/10.1016/j.carbon.2017.09.081
  57. F. Qin, L. Peng, G. He, J. Li. Corros. Sci. 77, 164 (2013). https://doi.org/10.1016/j.corsci.2013.07.040
  58. F. Qin, L. Peng, G. He, J. Li, Y. Yan. Ibid. 90, 340 (2015). https://doi.org/10.1016/j.corsci.2014.10.027
  59. M. Fradin, G.L. Vignoles, C. Ville et al. Ibid. 221, 111300 (2023). https://doi.org/10.1016/j.corsci.2023.111300
  60. C. Park, R.L. Jaffe, H. Partridge. J. Thermophys. Heat Transf. 15, 76 (2001). https://doi.org/10.2514/2.6582
  61. T. Suzuki, K. Fujita, K. Ando, T. Sakai. Ibid. 22, 382 (2008). https://doi.org/10.2514/1.35082
  62. P.V. Kozlov, I.E. Zabelinsky, N.G. Bykova, G.Ya. Gerasimov, V.Yu. Levashov. Russ. J. Phys. Chem. B 15, 989 (2021). https://doi.org/10.1134/S1990793121060208
  63. J. Yang, W. Li, J. Ge et al. Int. J. Heat Mass Transf. 206, 123962 (2023). https://doi.org/10.1016/j.ijheatmasstransfer.2023.123962
  64. R.S.C. Davuluri, H. Zhang, K.A. Tagavi, A. Martin. Int. J. Multiphase Flow 159, 104287 (2023). https://doi.org/10.1016/j.ijmultiphaseflow.2022.104287
  65. F. Xu, S. Zhu, J. Hu, Z. Ma, Y. Liu. Materials 13, 256 (2020). https://doi.org/10.3390/ma13020256
  66. Z. Liu, Y. Wang, X. Xiong et al. Ibid. 16, 2120 (2023). https://doi.org/10.3390/ma16052120
  67. C. Park, J. Thermophys. Heat Transf. 7, 385 (1993). https://doi.org/10.2514/3.431
  68. Y.-K. Chen, F.S. Milos, J. Spacecr. Rockets 42, 961 (2005). https://doi.org/10.2514/1.12248
  69. M. De Cesare, L. Savino, G. Ceglia et al. Prog. Aerospace Sci. 112, 100550 (2020). https://doi.org/10.1016/j.paerosci.2019.06.001
  70. V.V. Gorskij, A.N. Gordeev, A.A. Dmitrieva, A.F. Kolesnikov. Phys.-Chem. Kinet. Gaz. Dynam. 18 (2), 1 (2017).
  71. A. Fagnani, B. Helber, A. Hubin, O. Chazot, Infrared Phys. Technol. 139, 105301 (2024). https://doi.org/10.1016/j.infrared.2024.105301
  72. S. Oruganti, L. Capponi, B.M. Ringel et al. AIAA Paper 2024-0861 (2024). https://doi.org/10.2514/6.2024-0863
  73. J. Uhl, W. Owens, M. Dougherty et al. Ibid. 2011-3618 (2011). https://doi.org/10.2514/6.2011-3618
  74. F. Grigat, S. Loehle, F. Zander, S. Fasoulas. Ibid. 2020-1706 (2020). https://doi.org/10.2514/6.2020-1706
  75. A. De Giacomo, J. Hermann. J. Phys. D: Appl. Phys. 50, 183002 (2017). https://doi.org/10.1088/1361-6463/aa6585
  76. T.I. Calver, W.A. Bauer, C.A. Rice, G.P. Perram. Optical Eng. 60, 057103 (2021). https://doi.org/10.1117/1.OE.60.5.057103
  77. Y.N. Panchenko, A.V. Puchikin, S.A. Yampolskaya et al. Tech. Phys. 67, 215 (2022). https://doi.org/10.1134/S1063784222040041
  78. D. Diaz, D.W. Hahn. Spectrochim. Acta B 166, 105800 (2020). https://doi.org/10.1016/j.sab.2020.105800
  79. S.W. Lewis, R.G. Morgan, T.J. McIntyre, C.R. Alba, R.B. Greendyke. J. Spasecr. Rockets 53, 887 (2016). https://doi.org/10.2514/1.A33267
  80. C.R. Alba, R.B. Greendyke, S.W. Lewis, R.G. Morgan, T.J. McInture. Ibid. 53, 84 (2016). https://doi.org/10.2514/1.A33266
  81. C. Park. Nonequilibrium Hypersonic Aerothermodynamics (Wiley, New York, 1990).
  82. S.V. Zhluktov, T. Abe. J. Thermophys. Heat Transf. 13, 50 (1999). https://doi.org/10.2514/2.6400
  83. E. Whiting, C. Park, Y. Liu, J. Arnold, J. Paterson. NASA Ref. Publ. No. 1389 (1996).
  84. D. Bianchi, F. Nasuti, E. Martelli. J. Spasecr. Rockets 47, 554 (2010). https://doi.org/10.2514/1.47995
  85. A.O. Başkaya, M. Capriati, A. Turchi, T. Magin, S. Hickel. Comp. Fluids 270, 106134 (2024). https://doi.org/10.1016/j.compfluid.2023.106134
  86. G.A. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon Press, Oxford, 1994).
  87. D. Jiang, P. Wang, J. Li, M. Mao. Entropy. 24, 836 (2022). https://doi.org/10.3390/e24060836
  88. S. Chen, C. Stemmer. J. Spacecraft Rockets. 59, 1634 (2022). https://doi.org/10.2514/1.A35359
  89. A.L. Kusov, N.G. Bykova, G.Ya. Gerasimov, P.V. Kozlov, I.E. Zabelinsky, V.Yu. Levashov. Russ. J. Phys. Chem. B 18, 945 (2024). https://doi.org/10.1134/S1990793124700398
  90. S. Ramjatan, J. Douglas, T.E. Schwartzentruber. AIAA Paper 2023-3326 (2023). https://doi.org/10.2514/6.2023-3326
  91. S. Poovathingal, E.C. Stern, I. Nompelis, T.E. Schwartzentruber, G.V. Candler. J. Comput. Phys. 380, 427 (2019). https://doi.org/10.1016/j.jcp.2018.02.043
  92. M. Gosma, K.A. Stephani. AIAA Paper 2022-2356 (2022). https://doi.org/10.2514/6.2022-2356

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Application areas of reusable (REUS) and ablative (ABL) TPS materials depending on the altitude H, pressure p and velocity V of the descent vehicle in the Earth’s atmosphere: 1 – Space Shuttle, 2 – Apollo, 3 – return from Mars, 4 – return from distant planets.

下载 (80KB)
3. Fig. 2. Microstructure of the carbon filler of TPS material: a – felt and b – foam [49].

下载 (500KB)
4. Fig. 3. The main ablation processes occurring on the surface of TPS material at high temperatures.

下载 (198KB)
5. Fig. 4. Micrographs of graphite material before (a) and after (b) exposure to nitrogen plasma [56].

下载 (324KB)
6. Fig. 5. Photograph of the test chamber of the electric arc plasma installation [41]. The arrow shows the flow of low-temperature plasma.

下载 (79KB)
7. Fig. 6. Schematic diagram of the experimental setup [20] for studying laser ablation of a C/C composite: 1 – excimer laser, 2 – vacuum chamber, 3 – ablation product torch, 4 – sample, 5 – UV lenses, 6 – ICCD camera, 7 – spectrometer, 8 – optical fiber.

下载 (48KB)
8. Fig. 7. Schematic representation of the test section of the X2 impact unit [79]: 1 – impact unit nozzle, 2 – model support stand, 3 – copper electrodes, 4 – graphite model.

下载 (48KB)
9. Fig. 8. Comparison of the calculated spectra of the radiative heat flux Q at the braking point without taking into account (1) and taking into account (2) the chemical ablation process during the movement of the Stardust spacecraft in the Earth’s atmosphere [29].

下载 (93KB)

版权所有 © Russian Academy of Sciences, 2025