Study of ablative properties of carbon thermal protection materials
- 作者: Gerasimov G.Y.1, Levashov V.Y.2, Kozlov P.V.2, Bykova N.G.2, Zabelinsky I.E.2
-
隶属关系:
- Lomonosov Moscow State University, Moscow
- Lomonosov Moscow State University
- 期: 卷 44, 编号 4 (2025)
- 页面: 31-45
- 栏目: Combustion, explosion and shock waves
- URL: https://ta-journal.ru/0207-401X/article/view/682724
- DOI: https://doi.org/10.31857/S0207401X25040048
- ID: 682724
如何引用文章
详细
The current state of research on the study of the ablative properties of carbon thermal protection materials for spacecraft is considered in relation to the conditions of spacecraft motion in the Earth’s atmosphere. Various carbon/polymer composites, which are the main and most versatile class of thermal protection materials due to their ability to adapt to various thermal loads, are analyzed. A critical review of the physicochemical processes occurring during ablation of carbon-containing composites, as well as methods for their modeling, is made. An analysis of experimental facilities used to study the ablative properties of carbon thermal protection materials is carried out, as well as their operating principles, potential use and limitations.
全文:

作者简介
G. Gerasimov
Lomonosov Moscow State University, Moscow
Email: vyl69@mail.ru
Institute of Mechanics
俄罗斯联邦, МоскваV. Levashov
Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: vyl69@mail.ru
Institute of Mechanics
俄罗斯联邦, MoscowP. Kozlov
Lomonosov Moscow State University
Email: vyl69@mail.ru
Institute of Mechanics
俄罗斯联邦, MoscowN. Bykova
Lomonosov Moscow State University
Email: vyl69@mail.ru
Institute of Mechanics
俄罗斯联邦, MoscowI. Zabelinsky
Lomonosov Moscow State University
Email: vyl69@mail.ru
Institute of Mechanics
俄罗斯联邦, Moscow参考
- O. Uyanna, H. Najafi. Acta Astronaut. 176, 341 (2020). https://doi.org/10.1016/j.actaastro.2020.06.047
- A.V. Efremov, E.V. Efremov, M.S. Tiaglik et al. Ibid. 204, 900 (2023). https://doi.org/10.1016/j.actaastro.2022.10.056
- A.M. Brandis and B.A. Cruden et al. AIAA Paper 2017-1145 (2017). https://doi.org/10.2514/6.2017-1145
- G.Ya. Gerasimov, P.V. Kozlov, I.E. Zabelinsky, N.G. Bykova, V.Yu. Levashov. Russ. J. Phys. Chem. B 16, 642 (2022). https://doi.org/10.1134/S1990793122040194
- N.G. Bykova, I.E. Zabelinsky, P.V. Kozlov, G.Ya. Gerasimov, V.Yu. Levashov. Russ. J. Phys. Chem. B 17, 1152 (2023). https://doi.org/10.1134/S1990793123050184
- S.T. Surzhikov. Russ. J. Phys. Chem. B 4, 613 (2010). https://doi.org/10.1134/S1990793110040123
- Y. Zhao, H. Huang. Acta Astronaut. 169, 84 (2020). https://doi.org/10.1016/j.actaastro.2020.01.002
- J.H. Koo, D.W.H. Ho, M.C. Bruns, O.A. Ezekoye. AIAA Paper 2007-2131 (2007). https://doi.org/10.2514/6.2007-2131
- C.V. Kumar, B. Kandasubramanian. Ind. Eng. Chem. Res. 58, 22663 (2019). https://doi.org/10.1021/acs.iecr.9b04625
- F. Buffenoir, C. Zeppa, T. Pichon, F. Girard. Acta Astronaut. 124, 85 (2016). https://doi.org/10.1016/j.actaastro.2016.02.010
- J. Barcena, I. Garmendia, K. Triantou et al. Ibid. 134, 85 (2017). https://doi.org/10.1016/j.actaastro.2017.01.045
- W. Li, Z. Zhang, Z. Jiang et al. Aerosp. Sci. Technol. 126, 107647 (2022). https://doi.org/10.1016/j.ast.2022.107647
- Z. Zhao, K. Li, G. Kou, W. Li. Corros. Sci. 206, 110496 (2022). https://doi.org/10.1016/j.corsci.2022.110496
- P.F. Barbante. J. Thermophys. Heat Transf. 20, 493 (2006). https://doi.org/10.2514/1.17185
- F. Liu, J. Yang, X. Xiao et al. Meas. Sci. Technol. 33, 095004 (2022). https://doi.org/10.1088/1361-6501/ac6b17
- A. Fagnani, B. Helber, A. Hubin, O. Chazot. Ibid. 34, 075401 (2023). https://doi.org/10.1088/1361-6501/acc67c
- H. Kihara, M. Hatano, N. Nakiyama, K. Abe, M. Nishida. Trans. Japan Soc. Aero. Space Sci. 49 (164), 65 (2006). https://doi.org/10.2322/tjsass.49.65
- S.C.C. Bailey, D. Bauer, F. Panerai et al. Exp. Therm. Fluid Sci. 93, 319 (2018). https://doi.org/10.1016/j.expthermflusci.2018.01.005
- B.M. Ringel, H.J. Boesch, S. Oruganti et al. AIAA Paper 2024-0649 (2016). https://doi.org/10.2514/6.2024-0649
- G. Radhakrishnan, P.M. Adams, L.S. Bernstein. J. Appl. Phys. 134, 013303 (2023). https://doi.org/10.1063/5.0153331
- C. Park, D.W. Bogdanoff. J. Thermophys. Heat Transf. 20, 487 (2006). https://doi.org/10.2514/1.15743
- M.G. D’Souza, T.N. Eichmann, D.F. Potter et al. AIAA J. 48, 1557 (2010). https://doi.org/10.2514/1.J050207
- M. Bleilebens, H. Olivier. Shock Waves 15, 301 (2006). https://doi.org/10.1007/s00193-006-0025-2
- N.N. Mansour, F. Panerai, J. Lachaud, T. Magin. Annu. Rev. Fluid Mech. 56, 549 (2024). https://doi.org/10.1146/annurev-fluid-030322-010557
- F.S. Milos, Y.-K. Chen, J. Spacecr. Rockets 50, 137 (2013). https://doi.org/10.2514/1.A32302
- W. Chen. Int. J. Heat Mass Transf. 95, 720 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.031
- Y.Z. Huang, Yin Yu, Y.L. Hu, Z.Y. Yao, Dan Wu. Acta Astronaut. 214, 1 (2024). https://doi.org/10.1016/j.actaastro.2023.10.017
- B. Lopez, M. Lino da Silva. AIAA Paper 2016-4025 (2016). https://doi.org/10.2514/6.2016-4025
- I. Sohn, Z. Li, D.A. Levin. Ibid. 2011-3758 (2011). https://doi.org/10.2514/6.2011-3758
- J. Yang, J. Ge, Z. Jing, T. Shang, J. Liang. Int. J. Heat Mass Transf. 228, 125658 (2024). https://doi.org/10.1016/j.ijheatmasstransfer.2024.125658
- A.L. Zibitsker, J.A. McQuaid, R. Fu, C. Brehm, A. Martin. AIAA Paper 2024-1479 (2024). https://doi.org/10.2514/6.2024-1479
- G.M. Gunyaev, M.Ya. Gofin. Aviation materials and technologies. S1, 62 (2013).
- A.I. Nikolaev, Fine Chem. Technol. 10 (2), 61 (2015).
- N.V. Chukanov, T.S. Larikova, N.N. Dremova et al. Russ. J. Phys. Chem. B 14, 323 (2020). https://doi.org/10.1134/S1990793120020037
- M.I. Ikim, E.Y. Spiridonova, V.F. Gromov, G.N. Gerasimov, L.I. Trakhtenberg. Russ. J. Phys. Chem. B 18, 283 (2024). https://doi.org/10.1134/S199079312401010X
- Yu.V. Sokolkin, A.M. Votinov, A.A. Tashkinov, A.M. Postnykh, A.A. Chekalkin. Technology and design of carbon-carbon composites and structures (Fizmatlit, Moscow, 1996).
- Yu. I. Dmitrienko. Mechanics of composite structures at high temperatures (Fizmatlit, Moscow, 2019).
- F.R. Jones. Composites Science, Technology and Engineering (Univ. Press, Cambridge, 2022).
- S.M. Johnson. Engineering Ceramics: Current Status and Future Prospects. Ed. by T. Ohji, M. Singh (Wiley, New York, 2015). P. 224-243. https://doi.org/10.1002/9781119100430.ch12
- M. Natali, J.M. Kenny, L. Torre L. Prog. Mater. Sci. 84, 192 (2016). https://doi.org/10.1016/j.pmatsci.2016.08.003
- R.K. Chinnaraj, Y.C. Kim, S.M. Choi. Materials 16, 5929 (2023). https://doi.org/10.3390/ma16175929
- B. Behrens, M. Müller. Acta Astronaut. 55, 529 (2004). https://doi.org/10.1016/j.actaastro.2004.05.034
- S.V. Reznik, A.F. Kolesnikov, P.V. Prosuntsov, A.N. Gordeev, K.V. Mikhalovskii. J. Eng. Phys. Thermophys. 92, 306 (2019). https://doi.org/10.1007/s10891-019-01934-6
- L. Paglia, V. Genova, J. Tirillò et al. Appl. Compos. Mater. 28, 1675 (2021). https://doi.org/10.1007/s10443-021-09925-8
- P. Reynier. Acta Astronaut. 83, 175 (2013). https://doi.org/10.1016/j.actaastro.2012.06.016
- J. Lachaud, Y. Aspa., L. Vignoles. J. Heat Mass Transf. 51, 2614 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2008.01.008
- S.K. Sahoo, S. Mohanty, S.K. Nayak. Prog. Org. Coat. 88, 263 (2015). https://doi.org/10.1016/j.porgcoat.2015.07.012
- S. Shi, B. Lei, M. Li et al. Ibid. 143, 105609 (2020). https://doi.org/10.1016/j.porgcoat.2020.105609
- G. Pulci, J. Tirillò, F. Marra et al. Composites A41, 1483 (2010). https://doi.org/10.1016/j.compositesa.2010.06.010
- I. Srikanth, N. Padmavathi, S. Kumar et al. Compos. Sci. Technol. 80, 1 (2013). https://doi.org/10.1016/j.compscitech.2013.03.005
- L. Wang, J. Li, K. Li, Y. Wang. C. Ma, Chinese J. Aeronaut. 37, 471 (2024). https://doi.org/10.1016/j.cja.2023.11.005
- R.R.P. Kuppusamy, S. Neogi, S. Mohanta et al. Adv. Mater. Sci. Eng. 2022, 7808587 (2022). https://doi.org/10.1155/2022/7808587
- A. Kumar, C. Ranjan, K. Kumar et al. Polymers 16, 1461 (2024). https://doi.org/10.3390/polym16111461
- N.G. Bykova, I.E. Zabelinskii, P.V. Kozlov, G.Ya. Gerasimov, V.Yu. Levashov. Russ. J. Phys. Chem. B 17, 463 (2023). https://doi.org/10.1134/S1990793123020227
- G.Ya. Gerasimov, V.V. Khaskhachikh, G.A. Sychev, O.M. Larina, V.M. Zaichenko. Russ. J. Phys. Chem. B 16, 1067 (2022). https://doi.org/10.1134/S1990793122060045
- B. Helber, A. Turchi, T.E. Magin. Carbon 125, 582 (2017). https://doi.org/10.1016/j.carbon.2017.09.081
- F. Qin, L. Peng, G. He, J. Li. Corros. Sci. 77, 164 (2013). https://doi.org/10.1016/j.corsci.2013.07.040
- F. Qin, L. Peng, G. He, J. Li, Y. Yan. Ibid. 90, 340 (2015). https://doi.org/10.1016/j.corsci.2014.10.027
- M. Fradin, G.L. Vignoles, C. Ville et al. Ibid. 221, 111300 (2023). https://doi.org/10.1016/j.corsci.2023.111300
- C. Park, R.L. Jaffe, H. Partridge. J. Thermophys. Heat Transf. 15, 76 (2001). https://doi.org/10.2514/2.6582
- T. Suzuki, K. Fujita, K. Ando, T. Sakai. Ibid. 22, 382 (2008). https://doi.org/10.2514/1.35082
- P.V. Kozlov, I.E. Zabelinsky, N.G. Bykova, G.Ya. Gerasimov, V.Yu. Levashov. Russ. J. Phys. Chem. B 15, 989 (2021). https://doi.org/10.1134/S1990793121060208
- J. Yang, W. Li, J. Ge et al. Int. J. Heat Mass Transf. 206, 123962 (2023). https://doi.org/10.1016/j.ijheatmasstransfer.2023.123962
- R.S.C. Davuluri, H. Zhang, K.A. Tagavi, A. Martin. Int. J. Multiphase Flow 159, 104287 (2023). https://doi.org/10.1016/j.ijmultiphaseflow.2022.104287
- F. Xu, S. Zhu, J. Hu, Z. Ma, Y. Liu. Materials 13, 256 (2020). https://doi.org/10.3390/ma13020256
- Z. Liu, Y. Wang, X. Xiong et al. Ibid. 16, 2120 (2023). https://doi.org/10.3390/ma16052120
- C. Park, J. Thermophys. Heat Transf. 7, 385 (1993). https://doi.org/10.2514/3.431
- Y.-K. Chen, F.S. Milos, J. Spacecr. Rockets 42, 961 (2005). https://doi.org/10.2514/1.12248
- M. De Cesare, L. Savino, G. Ceglia et al. Prog. Aerospace Sci. 112, 100550 (2020). https://doi.org/10.1016/j.paerosci.2019.06.001
- V.V. Gorskij, A.N. Gordeev, A.A. Dmitrieva, A.F. Kolesnikov. Phys.-Chem. Kinet. Gaz. Dynam. 18 (2), 1 (2017).
- A. Fagnani, B. Helber, A. Hubin, O. Chazot, Infrared Phys. Technol. 139, 105301 (2024). https://doi.org/10.1016/j.infrared.2024.105301
- S. Oruganti, L. Capponi, B.M. Ringel et al. AIAA Paper 2024-0861 (2024). https://doi.org/10.2514/6.2024-0863
- J. Uhl, W. Owens, M. Dougherty et al. Ibid. 2011-3618 (2011). https://doi.org/10.2514/6.2011-3618
- F. Grigat, S. Loehle, F. Zander, S. Fasoulas. Ibid. 2020-1706 (2020). https://doi.org/10.2514/6.2020-1706
- A. De Giacomo, J. Hermann. J. Phys. D: Appl. Phys. 50, 183002 (2017). https://doi.org/10.1088/1361-6463/aa6585
- T.I. Calver, W.A. Bauer, C.A. Rice, G.P. Perram. Optical Eng. 60, 057103 (2021). https://doi.org/10.1117/1.OE.60.5.057103
- Y.N. Panchenko, A.V. Puchikin, S.A. Yampolskaya et al. Tech. Phys. 67, 215 (2022). https://doi.org/10.1134/S1063784222040041
- D. Diaz, D.W. Hahn. Spectrochim. Acta B 166, 105800 (2020). https://doi.org/10.1016/j.sab.2020.105800
- S.W. Lewis, R.G. Morgan, T.J. McIntyre, C.R. Alba, R.B. Greendyke. J. Spasecr. Rockets 53, 887 (2016). https://doi.org/10.2514/1.A33267
- C.R. Alba, R.B. Greendyke, S.W. Lewis, R.G. Morgan, T.J. McInture. Ibid. 53, 84 (2016). https://doi.org/10.2514/1.A33266
- C. Park. Nonequilibrium Hypersonic Aerothermodynamics (Wiley, New York, 1990).
- S.V. Zhluktov, T. Abe. J. Thermophys. Heat Transf. 13, 50 (1999). https://doi.org/10.2514/2.6400
- E. Whiting, C. Park, Y. Liu, J. Arnold, J. Paterson. NASA Ref. Publ. No. 1389 (1996).
- D. Bianchi, F. Nasuti, E. Martelli. J. Spasecr. Rockets 47, 554 (2010). https://doi.org/10.2514/1.47995
- A.O. Başkaya, M. Capriati, A. Turchi, T. Magin, S. Hickel. Comp. Fluids 270, 106134 (2024). https://doi.org/10.1016/j.compfluid.2023.106134
- G.A. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon Press, Oxford, 1994).
- D. Jiang, P. Wang, J. Li, M. Mao. Entropy. 24, 836 (2022). https://doi.org/10.3390/e24060836
- S. Chen, C. Stemmer. J. Spacecraft Rockets. 59, 1634 (2022). https://doi.org/10.2514/1.A35359
- A.L. Kusov, N.G. Bykova, G.Ya. Gerasimov, P.V. Kozlov, I.E. Zabelinsky, V.Yu. Levashov. Russ. J. Phys. Chem. B 18, 945 (2024). https://doi.org/10.1134/S1990793124700398
- S. Ramjatan, J. Douglas, T.E. Schwartzentruber. AIAA Paper 2023-3326 (2023). https://doi.org/10.2514/6.2023-3326
- S. Poovathingal, E.C. Stern, I. Nompelis, T.E. Schwartzentruber, G.V. Candler. J. Comput. Phys. 380, 427 (2019). https://doi.org/10.1016/j.jcp.2018.02.043
- M. Gosma, K.A. Stephani. AIAA Paper 2022-2356 (2022). https://doi.org/10.2514/6.2022-2356
补充文件
