Cylindrical cavity in a layer of solid explosives: dynamics of collaps on impact, critical conditions for explosion

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A numerical and analytical solution has been carried out for the hydrodynamic problem of the collapse of a cylindrical cavity in a freely spreading layer of solid explosive upon impact. Based on the results of calculations of the conditions for the initiation of HMX-type explosive charges, the critical impact parameters, geometric and physical-mechanical characteristics of the layer and the properties of the gas cavity were determined. The dual role of gas in the cavity was established, in some cases facilitating or preventing the process of explosion occurrence.

Texto integral

Acesso é fechado

Sobre autores

A. Dubovik

Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: a-dubovik@mail.ru
Rússia, Moscow

Bibliografia

  1. F.P. Bowden, A.F. Ioffe. Initiation and Growth of Explosion in Solids and Liquids (Cambridge University Press, 1952).
  2. N.A. Kholevo. Sensitivity of Explosives to Iimpact (Mashinostroenie, Moscow, 1974) [in Russian].
  3. K.K. Andreev, A.F. Belyaev. Theory of Explosives (Oborongiz, Moscow, 1960) [in Russian].
  4. G.T. Afanasyev, V.K Bobolev. Initiation of Solid Explosives by Impact (Nauka, Moscow, 1968) [in Russian].
  5. B.A. Khasainov, A.V. Attetkov, A.A. Borisov. Khimicheskaya Fizika 15(7), 103 (1996).
  6. E.I. Andriankin, V.K. Bobolev, A.V Dubovik. Applied Mechanics and Technical Physics, 6, 98 (1970).
  7. A.A. Ilyushin. Plasticity (OGIZ, Moscow, 1948) [in Russian].
  8. N.B.Vargaftik. Handbook on the Tthermophysical Properties of Gases and Liquids (Nauka, Moscow, 1972) [in Russian].
  9. L.M. Kachanov. Fundamentals of the Theory of Plasticity (Nauka, Moscow, 1969) [in Russian].
  10. G.I. Nazin, B.L. Korsunskiy, A.I. Karasev, A.V, Nabatova, N.G. Samoilenko. Russ. J. Phys. Chem. B 17(2), 406 (2023). https://doi.org/10.1134/S1990793123020124
  11. A.V. Dubovik. Russ. J. Phys. Chem. B 17(2), 369 (2023). https://doi.org/10.1134/S1990793123020057.
  12. V.N. Marshakov and V.G. Krupkin. Russ. J. Phys. Chem. B 17(2), 388 (2023). https://doi.org/10.1134/S1990793123020100
  13. A.V. Dubovik. Russ. J. Phys. Chem. B 16(2), 260 (2022). https://doi.org/10.1134/S1990793122020051

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Schematic diagram of the arrangement of the gas cavity (1) in the TB layer (4) between the striker (2) and the anvil (3) in a device with free outflow of the substance. Here r, z are the axes of the cylindrical coordinate system; R is the radius of the striker; w is the impact velocity; h0, h and 0,  are the initial and current layer thickness and cavity radius, respectively; u is the radial flow velocity; s is the current position of the neutral line.

Baixar (60KB)
3. Fig. 2. Stress and pressure profiles in the TBB layer: 1 – z, 2 – r, 3 – ϕ, 4 – pressure p. The gas cavity is located in the interval  = [0, 0.2].

Baixar (63KB)
4. Fig. 3. Axial stress profiles in a layer with a cavity of diameter 2 mm (1), 1 mm (2), 0.1 mm (3), 0.01 (4), 0.001 mm (5).

Baixar (60KB)
5. Fig. 4. Dependence of the ultimate compression pressure of the layer (P0 reduced to τ0) on the layer thickness = h/h0 (axis on the right) (1) and the cavity radius  = a/a0 (axis on the left) (2).

Baixar (41KB)
6. Fig. 5. Dynamics of the parameters of a collapsing cavity with a0 = 0.5 mm, h0 = 1 mm: 1 – radius a/a0, 2 – neutral line q/q0, 3 – layer thickness h/h0, 4 – wall velocity 0.03V m/s, 5 – wall temperature Ta /T0, 6 – gas temperature Tg /T0, 7 – amount of explosion products .

Baixar (76KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025