Influence of the choice of kinetic mechanism on predicted structure of lean hydrogen–air flames

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The influence of the choice of a detailed kinetic mechanism (DKM) on the structure of a laminar flame for lean hydrogen-air mixtures has been studied by means of numerical simulation using a CHEMKIN-Pro software module. It is shown that the choice of three detailed kinetic mechanisms (DKMs), differing in the rate constants of elementary reactions, the number of reaction pathways, and the presence of additional components, has virtually no effect on flame propagation velocity and flame structure. It is found that small differences in the local sensitivity of heat release to elementary reactions can provide reliable information on possible ways of influencing flame propagation.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Tereza

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: tereza@chph.ras.ru
Ресей, Moscow

G. Agafonov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: tereza@chph.ras.ru
Ресей, Moscow

E. Anderzhanov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: tereza@chph.ras.ru
Ресей, Moscow

A. Betev

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: tereza@chph.ras.ru
Ресей, Moscow

S. Khomik

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: tereza@chph.ras.ru
Ресей, Moscow

T. Cherepanova

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: tereza@chph.ras.ru
Ресей, Moscow

A. Cherepanov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: tereza@chph.ras.ru
Ресей, Moscow

S. Medvedev

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: tereza@chph.ras.ru
Ресей, Moscow

Әдебиет тізімі

  1. A.M. Domashenko, A.V. Stepanov. Vesti gazovoj nauki 51(2), 211 (2022).
  2. S.V. Korobtsev, V.N. Fateev, R.O. Samsonov, S.I. Kozlov. Transport na alternativnom toplive 5, 68 (2008).
  3. A.A. Abagyan, E.O. Adamov, E.V. Burlakov. Proc. IAEA Conf. (Intern.). Vienna, Austria. 1996. IAEA-J4-TC972. P. 46.
  4. G. Saji, Nucl. Eng. Des. 307, 64 (2016). http://dx.doi.org/10.1016/j.nucengdes.2016.01.039
  5. Bentaib, N. Meynet, A. Bleyer. Nucl. Eng. 47(1), 26 (2015). https://doi.org/10.1016/j.net.2014.12.001
  6. Kirillov, N. Kharitonova, R. Sharafutdinov, N. Krenniikov. Nucl. Rad. Safety J. 2(84), 26 (2017).
  7. Yakovenko, A. Kiverin, K. Melnikova. Fluids 6(1), 21 (2021). https://doi.org/10.3390/fluids6010021
  8. I.S. Yakovenko, I.S. Medvedkov, A.D. Kiverin. Russ. J. Phys. Chem. B. 16, 294 (2022). https://doi.org/10.1134/S1990793122020142
  9. A.M. Tereza, G.L. Agafonov, E.K. Anderzhanov, A.S. Betev, S.P. Medvedev, S.V. Khomik, T.T. Cherepanova. Russ. J. Phys. Chem. B. 17(4), 974 (2023). https://doi.org/10.1134/S1990793123040309
  10. P. Krivosheyev, Y. Kisel, A. Skilandz, K. Sevrouk, O. Penyazkov, A. Tereza. Int. J. Hydrogen Energy 66, 81 (2024). https://doi.org/10.1016/j.ijhydene.2024.03.363
  11. D.A. Frank-Kamenetskii. Diffusion and Heat Transfer in Chemical Kinetics. (Plenum, New York, 1969).
  12. A.A. Azatyan, S.K. Abramov, A.A. Borisov, V.M. Prokopenko. Russ. J. Phys. Chem. A. 86 (3), 355 (2012). https://doi.org/10.1134/S0036024412030053
  13. A.L. Sanchez, F.A. Williams. Prog. Energy Combust. Sci. 41, 1 (2014). https://doi.org/10.1016/j.pecs.2013.10.002
  14. A.M. Tereza, G.L. Agafonov, E.K. Anderzhanov et al. Russ. J. Phys. Chem. B. 17 (6), 1294. https://doi.org/10.1134/S1990793123060246
  15. D.A. Knyazkov, A.G. Shmakov, O.P. Korobeinichev. Combust. Flame 151, 37 (2007). https://doi.org/10.1016/j.combustflame.2007.06.011
  16. D.A. Knyazkov, V. Shvartsberg, A. Dmitriev et al. Combustion Explosion and Shock Waves 53, 491 (2017). https://doi.org/10.1134/S001050821705001X
  17. A.G. Shmakov. Doctoral Dissertation in Chemistry. (Voevodsky Inst. of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2022).
  18. A.E. Elyanov, A.I. Gavrikov, V.V. Golub, A.Y. Mikushkin, V.V. Volodin. Process Saf. Environm. Prot. 164, 50 (2022). https://doi.org/10.1016/j.psep.2022.06.007
  19. D.L. Baulch, C.T. Bowman, C.J. Cobos et al. J. Phys. Chem. Ref. Data. 34(3), 757 (2005). https://doi.org/10.1063/1.1748524
  20. A.M. Tereza, G.L. Agafonov, E.K. Anderzhanov et al. Russ. J. Phys. Chem. B 16, 686 (2022). https://doi.org/10.1134/S1990793122040297
  21. Keromnes, W.K. Metcalfe, K.A. Heufer et al. Combust. and Flame 160, 995 (2013). https://doi.10.1016/j.combustflame.2013.01.001
  22. A.A. Konnov. Combust. and Flame 203, 14 (2019). https://doi.org/10.1016/j.combustflame.2019.01.032
  23. CHEMKIN-Pro 15112, Reaction Design, San Diego, CK-TUT-10112-1112-UG-1., 2011.
  24. S.P. Karkach, V.I. Osherov. J. Chem. Phys. 110, 11918 (1999). http://dx.doi.org/10.1063/1.479131
  25. J.V. Michael, J.W. Sutherland, L.B. Harding et al. // Proc. Combust. Symp. 28, 1471 (2000).
  26. P.A. Vlasov, V.N. Smirnov, A.M. Tereza. Russ. J. Phys. Chem. B 10, 456 (2016). https://doi.10.1134/S1990793116030283
  27. S. Medvedev, G. Agafonov, S. Khomik. Acta Astronaut. 126, 150 (2016). https://doi.org/10.1016/j.actaastro.2016.04.019
  28. A.E. Lutz, R.J. Kee, J.A. Miller. Sandia National Laboratories, Livermore, CA, SAND 87-82481998.
  29. R.J. Kee, J.F. Grcar, M.D. Smooke, J.A. Miller. Sandia National Laboratories, Livermore, CA, SAND85-8240, 1985.
  30. V.V. Roenko, A.P. Karmes. Tekhnologia pozharotushenia 3, 15 (2017).
  31. B.E. Gel’fand, O.M. Popov, B.B. Chaivanov. Hydrogen: Parameters of Combustion and Explosion (Fizmatlit, Moscow, 2008) [In Russian].

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Concentration and temperature profiles (a) and temperature sensitivity analysis to reactions determining heat release in a laminar flame (b), calculated using the DCM from [10] for a mixture of 15% H2 in air under normal initial conditions

Жүктеу (405KB)
3. Fig. 2. The same as in Fig. 1, but using the DCM from [21].

Жүктеу (416KB)
4. Fig. 3. The same as in Fig. 1, but using the DCM from [22].

Жүктеу (416KB)

© Russian Academy of Sciences, 2025