Structure, conductivity and sensor properties of NiO–In2O3 composites synthesis by different methods

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The effect of the synthesis method of NiO–In2O3 composites on their structural, conductive and sensory characteristics when detecting hydrogen was studied. Impregnation of indium oxide nanoparticles with a nickel nitrate salt and a hydrothermal method with aqueous solutions of the corresponding salts were used. It has been shown that during the impregnation process, nickel oxide is formed in the form of amorphous nanoparticles on the surface of indium oxide, and during hydrothermal treatment, nickel ions are introduced into In2O3 structures. In impregnated composites, the particle size of indium oxide does not depend on the composition and is 60 nm, while in hydrothermal composites it decreases from 35 to 30 nm with increasing nickel content. With an increase in nickel content from 0 to 3 wt.% for both synthesis methods, the conductivity decreases, and the resistance for hydrothermal samples is an order of magnitude higher than for impregnated ones. The sensory response was almost twice as high.

Texto integral

Acesso é fechado

Sobre autores

M. Ikim

Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: ikimmary1104@gmail.com
Rússia, Moscow

A. Erofeeva

Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences

Email: ikimmary1104@gmail.com
Rússia, Moscow

E. Spiridonova

Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences

Email: ikimmary1104@gmail.com
Rússia, Moscow

V. Gromov

Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences

Email: ikimmary1104@gmail.com
Rússia, Moscow

G. Gerasimov

Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences

Email: ikimmary1104@gmail.com
Rússia, Moscow

L. Trakhtenberg

Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences; Lomonosov Moscow State University

Email: ikimmary1104@gmail.com
Rússia, Moscow; Moscow

Bibliografia

  1. Q. Li, W. Zeng, Y. Li. Sens. Actuators B. 359, 131579 (2022).
  2. C. Zhang, K. Xu, K. Liu, J. Xu, Z. Zheng, Coord. Chem. Rev. 472, 214758 (2022).
  3. K.G. Krishna, S. Parne, N. Pothukanuri, V. Kathirvelu, S. Gandi, D. Joshi. Sens. Actuators A. 341, 113578 (2022).
  4. L.I. Trakhtenberg, M.I. Ikim, O.J. Ilegbusi, V.F. Gromov, G.N. Gerasimov. Chemosens. 11, 320 (2023).
  5. S. Yan, W. Song, D. Wu, S. Jin, S. Dong, H. Hao, W. Gao, J. Alloys Compd. 896, 162887 (2022).
  6. M.I. Ikim, E.Y. Spiridonova, V.F. Gromov, G.N. Gerasimov, L.I. Trakhtenberg, Russ. J. Phys. Chem. B 17, 774 (2023).
  7. L.C. Jimenez, H.A. Mendez, B.A. Paez, M.E. Ramırez, H. Rodrıguez. Braz. J. Phys. 36, 1017 (2006).
  8. P. Prathap, D.G. Gowri, Y.P.V. Subbaiah, R.K.T. Ramakrishna, V. Ganesan // Current Appl. Phys. 8, 120 (2008).
  9. G.N. Gerasimov, V.F. Gromov, M.I. Ikim, L.I. Trakhtenberg. Russ. J. Phys. Chem. B 15, 1072 (2021).
  10. X. Fan, Y. Xu, W. He. RSC advances. 11, 11215 (2021).
  11. Y. Zhang, J. Cao, Y. Wang. Vacuum. 202, 111149 (2022).
  12. Z. Jin, C. Wang, L. Wu, H. Song, X. Yao, J. Liu, F. Wang. Sens. Actuators B. 377, 133058 (2023).
  13. M.I. Ikim, E.Y. Spiridonova, V.F. Gromov, G.N. Gerasimov, L.I. Trakhtenberg. Russ. J. Phys. Chem. B 16, 1180 (2022).
  14. V.F. Gromov, M.I. Ikim, G.N. Gerasimov, L.I. Trakhtenberg. Russ. J. Phys. Chem. B. 15, 1084 (2021).
  15. M.I. Ikim, E.Y. Spiridonova, V.F. Gromov, G.N. Gerasimov, L.I. Trakhtenberg. Russ. J. Phys. Chem. B. 18, 283 (2024).
  16. Y. Wang, M. Yao, R. Guan, Z. Zhang, J. Cao. J. Alloys Compd. 854, 157169 (2021).
  17. M.I. Ikim, V.F. Gromov, G.N. Gerasimov, E.Y. Spiridonova, A.R. Erofeeva, K.S. Kurmangaleev, L.I. Trakhtenberg. Micromachines. 14, 1685 (2023).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Dependence of the lattice parameter (a) and particle size (b) of In2O3 on the NiO content in composites obtained by the impingement method (squares) and hydrothermal method (asterisks).

Baixar (57KB)
3. Fig. 2. Concentration dependence of resistance (a) and sensory response at detection of 0.9% H2 (b) of composites obtained by different methods. The designations are the same as in Fig. 1.

Baixar (61KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025