Determination of threshold values of parameters of electronic irradiation of glass leading to electrostatic discharges

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Experimental data are presented on the minimum values of energies and flux densities of electrons, the impact of which on the cover glasses of solar batteries and reflecting elements of thermoradiators of artificial Earth satellites leads to electrostatic discharges. It has been established that the addition of protons to the composition of the particle flux acting on the studied samples can suppress the development of discharges. For a qualitative interpretation of the results obtained, a mathematical model is proposed.

Texto integral

Acesso é fechado

Sobre autores

R. Khasanshin

JSC “Kompozit”; Bauman Moscow State Technical University

Autor responsável pela correspondência
Email: rhkhas@mail.ru
Rússia, Korolev, 141070; Moscow, 105005

D. Ouvarov

JSC “Kompozit”

Email: rhkhas@mail.ru
Rússia, Korolev, 141070

Bibliografia

  1. Ferguson D.C., Wimberly S.C. // Proc. 50th AIAA Aerospace Sci. Mtg. (Nashville, 2013) Art. No. 0810.
  2. Новиков Л.С. Модель космоса. Научно-информационное издание. Т. 2. М.: КДУ, 2007. 1144 с.
  3. Kazuhiro Toyoda, Teppei Okumura, Satoshi Hosoda, Mengu Cho // J. Spacecr. Rockets. 2005. V. 42. No. 5. P. 947.
  4. Хасаншин Р.Х., Применко Д.А. // Изв. РАН. Сер. физ. 2022. Т. 86. № 5. С. 633; Khasanshin R.H., Primenko D.A. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 5. P. 526.
  5. Kadono K., Itakura N., Akai T. et al. // J. Phys. Cond. Matter. 2010. V. 22. No. 4. Art. No. 045901.
  6. Бреховских С.М., Викторова Ю.Н., Ланда Л.М. Радиационные эффекты в стеклах. М.: Энергоиздат, 1982. 182 с.
  7. Fu X., Song L., Jiacheng, Li J. // J. Rare Earths. 2014. V. 32. No. 11. P. 1037.
  8. Kreidl N., Hensler J. // J. Amer. Ceram. Soc. 2006. V. 38. P. 423.
  9. Roussel J.-F., Alet I., Faye D., Pereira A. // J. Spacecraft. Rockets. 2004. V. 41. No. 5. P. 812.
  10. Zhao Xiaohu, Shen Zhigang, Xing Yushan, Ma Shulin // J. Acta Aeronaut. Astronaut. Sci. 2009. V. 30. No. 1. P. 159.
  11. Хасаншин Р.Х., Новиков Л.С. // Персп. матер. 2021. № 10. С. 5; Khasanshin R.H., Novikov L.S. // Inorg. Mater. Appl. Res. 2022. V. 13. No. 2. P. 326.
  12. Fakhfakh S., Jbara O., Belhaj M. et al. // J. Appl. Phys. 2008. V. 104. Art. No. 093704.
  13. Hanna R., Paulmier T., Belhaj M., et al. // J. Physics D. 2011. V. 44. Art. No. 445402.
  14. Guerch K., Paulmier T., Guillemet-Fritsch S., Lenormand P. // Nucl. Instr. Meth. B. 2015. V. 349. P. 147.
  15. Miyake H., Tanaka Y., Takada T., Liu R. // IEEE Trans. Dielec. Elect. Insul. 2007. V. 14. No. 2. P. 520.
  16. Khasanshin R.H., Novikov L.S. // Adv. Space Res. 2016. V. 57. P. 2187.
  17. Koons C., Mazur J.E., Selesnick R.S. et al.// Proc. 6th Spacecraft Charging Technol. Conf. (Hanscom, 1998). P. 7.
  18. Ollier N., Rizza G., Boizot B., Petite G. // J. Appl. Phys. 2006. V. 99. Art. No. 073511.
  19. Ollier N., Boizot B., Reynard B., et al. // J. Nucl. Mater. 2005. V. 340. P. 209.
  20. Хасаншин Р.Х. Новиков Л.С. // Персп. матер. 2020. № 11. С. 5; Khasanshin R.H., Novikov L.S. // Inorg. Mater. Appl. Res. 2021. V. 12. No. 2. P. 313
  21. Boizot B., Petite G., Ghaleb D. et al. // Nucl. Instr. Meth. B. 2000. V. 166–167. P. 500.
  22. Boizot B., Petite G., Ghaleb D., Calas G. // J. Non-Cryst. Solids. 2001. V. 283. P. 179.
  23. Хасаншин Р.Х., Новиков Л.С., Гаценко Л.С., Волкова Я.Б. // Персп. матер. 2015. № 1. С. 22; Khasanshin R.H., Novikov L.S., Gatsenko L.S., Volkova Ya.B. // Inorg. Mater. Appl. Res. 2015. V. 6. No. 5. P. 438.
  24. Хасаншин Р.Х., Новиков Л.С. // Поверхность. Рентген. синхротр. и нейтрон. исслед.2018. № 11. С. 48; Khasanshin R.H., Novikov L.S. // J. Surf. Invest. X-ray, Synchrotron Neutron Tech. 2018. V. 12. No. 6. P. 1088.
  25. Свечкин В.П., Савельев А.А., Соколова С.П., Бороздина О.В. // Космич. техн. и технологии. 2017. № 2. С. 99; Svechkin V.P., Savelyev A.A., Sokolova S.P., Borozdina O.V. // Space Tech. Technol. 2017. No. 2. P. 99.
  26. Хасаншин Р.Х., Новиков Л.С. // Персп. матер. 2023. № 1. С. 19; Khasanshin R.H., Novikov L.S. // Inorg. Mater. Appl. Res. 2023, V. 14. No. 5. P. 1207.
  27. Hai-Bo Z., Wei-Qin L., Meng C. // Chin. Phys. Lett. 2012. V. 29. No. 4. Art. No. 047901.
  28. Li W.-Q., Zhang H.-B. // Appl. Surf. Sci. 2010. V. 256. No. 11. P. 3482.
  29. Zhang H.-B., Li W.-Q., Cao M. // J. Electron Microsc. 2012. V. 61. P. 85.
  30. Raftari B., Budko N.V., Vuik C. // J. Appl Phys. 2015. V. 118. P. 204101.
  31. Markowich P.A., Ringhofer C., Schmeiser C. Semiconductor equations. N.Y.: Springer-Verlag Inc., 1990.
  32. Ильин В.П. Численные методы решения задач электрофизики. М.: Наука, 1985. 333 с.
  33. Михеев Н.Н., Степович М.А., Широкова Е.В. // Изв. РАН. Сер. физ. 2010. Т. 74. № 7. С. 1043; Mikheev N.N., Stepovich M.A., Shirokova E.V. // Bull. Russ. Acad. Sci. Phys. 2010. V. 74. No. 7. P. 1002.
  34. Михеев Н.Н., Степович М.А., Широкова Е.В. // Изв. РАН. Сер. физ. 2012. Т. 76. № 9. С. 1086; Mikheev N.N., Stepovich M.A., Shirokova E.V. // Bull. Russ. Acad. Sci. Phys. 2012. V. 76. No. 9. P. 974.
  35. Желтоножская М.В., Лыкова Е.Н., Черняев А.П., Яценко В.Н. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 1003; Zheltonozhskaya M.V., Lykova E.N., Iatsenko V.N. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No.7. P. 915.
  36. Валиев Д.Т., Степанов С.А., Yao G., Zhou Y. // ФТТ. 2019. Т. 61. № 10. С. 1879; Valiev D.T., Stepanov S.A., Yao G., Zhou Y. // Phys. Solid State. 2019. V. 61. No. 10. P. 1835.
  37. Nguyen H.-D., Wulfkühler J.-P., Tajmar M. // J. Vac. Sci. Technol. B. 2023. V. 41. No. 3. Art. No. 034203.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. 2D images of 5×5 μm2 fragments of the surface of the original (a) and irradiated sample (c) and their sections along the line 1–1’, 2–2’ (b) and 3–3’ (d), respectively.

Baixar (390KB)
3. Fig. 2. Oscillograms of currents characteristic of the processes accompanying electron irradiation of PS and OE samples (a and b) and OE (c–e): a – type 1 discharges at Ee0 = 15 keV (1), 30 keV (2), 45 keV (3); b – type 1 discharge initiates a similar discharge on the adjacent surface area; c – breakdown on the metal substrate; d and e – respectively, breakdown on the metal substrate initiates type 1 discharge and vice versa; e – breakdown initiates type 2 discharge.

Baixar (296KB)
4. Fig. 3. Dependence of the number of discharges per minute on the electron flux density for different values ​​of Ee0.

Baixar (97KB)
5. Fig. 4. Schematic diagram of the computational domain: ГP – electron gun-vacuum boundary; V – vacuum; G – glass; D – dielectric; ГV–G – vacuum-glass boundary; ГG–D – glass-dielectric boundary; and – electron velocities upon exiting the electron gun and upon entering the glass, respectively; ΩV and ΩG – regions of the problem solution in vacuum and glass, respectively.

Baixar (78KB)
6. Fig. 5. Dependence of the electron energy upon entering the target on the irradiation time (a) and the distribution of the concentration of electrons injected into the PS at different moments of irradiation time (b): 0.1 s (1); 10 s (2); 20 s (3).

Baixar (97KB)
7. Fig. 6. Distribution of electron flux density over the irradiated surface of the PS at different moments of irradiation time: 0.1 s (a); 10 s (b); 20 s (c).

Baixar (143KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024