The computational model validating of target sputtering in a miniature linear accelerator

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We presented the results of an experimental study and numerical simulation of the ion beam current distribution on the target of a collapsible miniature linear accelerator. The comparison of the experimental results with the simulation results is carried out. It is shown that the computational model makes it possible to estimate the effect of an ion beam on target sputtering in a miniature linear accelerator.

Full Text

Restricted Access

About the authors

I. М. Mamedov

Dukhov Automatics Research Institute; National Research Nuclear University MEPhi (Moscow Engineering Physics Institute)

Author for correspondence.
Email: schildkrote5552@yandex.ru
Russian Federation, Moscow, 127055; Moscow, 115522

I. A. Kanshin

Dukhov Automatics Research Institute

Email: schildkrote5552@yandex.ru
Russian Federation, Moscow, 127055

M. S. Lobov

Dukhov Automatics Research Institute

Email: schildkrote5552@yandex.ru
Russian Federation, Moscow, 127055

N. V. Mamedov

Dukhov Automatics Research Institute; National Research Nuclear University MEPhi (Moscow Engineering Physics Institute)

Email: schildkrote5552@yandex.ru
Russian Federation, Moscow, 127055; Moscow, 115522

References

  1. Valkovic V. 14 MeV neutrons. Physics and applications. London, New York: CRC Press Taylor&Francis Group, 2016. 500 р.
  2. http://www.vniia.ru/production/incl/prospekt_element.pdf.
  3. Дашков И.Д., Федоров Н.А., Грозданов Д.Н. и др. // Изв. РАН. Сер. физ. 2021. Т. 85. № 10. С. 1436; Dashkov I.D., Fedorov N.A., Grozdanov D.N. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 10. P. 1113.
  4. http://escholarship.org/uc/item/9vn757hp.
  5. Kanshin I.A., Mamedov N.V., Solodovnikov A.A. et al. / Vacuum. 2022. V. 202. Art. No. 111194.
  6. Sy A., Ji Q. // AIP Conf. Proc. 2011. V. 1336. P. 533.
  7. Мамедов Н.В., Прохорович Д.Е., Юрков Д.И. и др. // ПТЭ. 2018. Т. 61. № 4. С. 62; Mamedov N.V., Prokhorovich D.E., Yurkov D.I. et al. // Instrum. Exp. Tech. 2018. V. 61. No. 4. P. 530.
  8. Mamedov N.V., Prokhorovich D.E., Kanshin I.A. et al. // AIP Conf. Proc. 2018. V. 2011. Art. No. 080006.
  9. Coupland J.R., Green T.S., Hammond D.P., Riviere A.C. // Rev. Sci. Instrum. 1973. V. 44. P. 1258.
  10. Беграмбеков Л.Б., Довганюк С.С., Евсин А.У. и др. // Изв. РАН. Сер. физ. 2018. Т. 82. № 2. С. 134; Begrambekov L.B., Dovganyuk S.S., Evsin A.U. et al. // Bull. Russ. Acad. Sci. Phys. 2018. V. 82. No. 2. P. 117.
  11. Rashchikov V.I. // Phys. Procedia. 2015. No. 74. P. 97.
  12. Dolgov A.N., Markov V.G., Kanshin I.A. et al. // J. Phys. Conf. Ser. 2016. V. 666. Art. No. 012023.
  13. Каншин А.А., Солодовников A.А. // ПТЭ. 2020. Т. 63. № 3. С. 62; Kanshin A.A., Solodovnikov A.A. // Instrum. Exp. Tech. 2020. V. 63. No. 3. P. 315.
  14. Белых С.Ф., Евтухов Р.Н., Луткова Л.В. и др. // ЖТФ. 1992. Т. 62. № 6. С. 179; Belykh S.F., Evtukhov R.N., Lutkova L.V. et al.// Tech. Phys. 1992. V. 62. No 6. P. 179.
  15. Kanshin I.A. // Proc. EFRE2020. (Tomsk, 2020). P. 474.
  16. Rokhmanenkov A.S., Kuratov S.E. // J. Phys. Conf. Ser. 2019. V. 1250. Art. No. 012036.
  17. Mamedov N.V., Rokhmanenkov A.S., Solodovnikov A.A. // J. Phys. Conf. Ser. 2021. V. 2064. Art. No. 012039.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Simplified three-dimensional model of the IOS with a target: 1 – focusing electrode; 2 – accelerating electrode; 3 – target.

Download (57KB)
3. Fig. 2. Three-dimensional model of AI with IOS and target: 1 – AI; 2 – focusing electrode; 3 – accelerating electrode; 4 – target.

Download (50KB)
4. Fig. 3. Dependence of the number of argon ions in the discharge chamber on time.

Download (88KB)
5. Fig. 4. Distribution of particles in the discharge chamber of the ion source.

Download (154KB)
6. Fig. 5. Photographic image of the IOS: 1 – output aperture of the ion source; 2 – aperture of the accelerating electrode. (a) – before the experiment with the illumination on; (b)–(d) – during the experiment with the illumination off and accelerating voltage: (b) 0 kV; (c) –10 kV; (d) –25 kV.

Download (73KB)
7. Fig. 6. Image of the target: sprayed surface (a); metallographic image (b).

Download (194KB)
8. Fig. 7. Scheme of target erosion.

Download (166KB)
9. Fig. 8. Experimental distribution of current density on the target surface.

Download (93KB)
10. Fig. 9. Modeling of beam motion in the IOS based on experimentally measured emittance: 1 – output aperture of the focusing electrode; 2 – accelerating electrode. (a) – potential distribution; (b)–(d) – ion trajectories at accelerating voltage: (b) Uуск = 0 kV; (c) Uуск = –10 kV; (d) Uуск = –25 kV.

Download (104KB)
11. Fig. 10. Modeling of beam motion in the IOS based on the particle-in-cell method data: 1 – output aperture of the focusing electrode; 2 – accelerating electrode. (a) – potential distribution; (b)–(d) – ion trajectories at accelerating voltage: (b) Uуск = 0 kV; (c) Uуск = –10 kV; (d) Uуск = –25 kV.

Download (132KB)
12. Fig. 11. 2D distribution of current density on the target. Uacc = –25 kV.

Download (57KB)
13. Fig. 12. Current density distribution on the target surface for emittance simulation.

Download (165KB)
14. Fig. 13. 2D distribution of current density on the target over time. Uacc = –25 kV, Ustor = +2 kV.

Download (102KB)
15. Fig. 14. Current distribution on the target for different source operating times.

Download (132KB)
16. Fig. 15. Graph of the current distribution envelope on the target.

Download (130KB)

Copyright (c) 2024 Russian Academy of Sciences