The computational model validating of target sputtering in a miniature linear accelerator

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We presented the results of an experimental study and numerical simulation of the ion beam current distribution on the target of a collapsible miniature linear accelerator. The comparison of the experimental results with the simulation results is carried out. It is shown that the computational model makes it possible to estimate the effect of an ion beam on target sputtering in a miniature linear accelerator.

Толық мәтін

Рұқсат жабық

Авторлар туралы

I. Mamedov

Dukhov Automatics Research Institute; National Research Nuclear University MEPhi (Moscow Engineering Physics Institute)

Хат алмасуға жауапты Автор.
Email: schildkrote5552@yandex.ru
Ресей, Moscow, 127055; Moscow, 115522

I. Kanshin

Dukhov Automatics Research Institute

Email: schildkrote5552@yandex.ru
Ресей, Moscow, 127055

M. Lobov

Dukhov Automatics Research Institute

Email: schildkrote5552@yandex.ru
Ресей, Moscow, 127055

N. Mamedov

Dukhov Automatics Research Institute; National Research Nuclear University MEPhi (Moscow Engineering Physics Institute)

Email: schildkrote5552@yandex.ru
Ресей, Moscow, 127055; Moscow, 115522

Әдебиет тізімі

  1. Valkovic V. 14 MeV neutrons. Physics and applications. London, New York: CRC Press Taylor&Francis Group, 2016. 500 р.
  2. http://www.vniia.ru/production/incl/prospekt_element.pdf.
  3. Дашков И.Д., Федоров Н.А., Грозданов Д.Н. и др. // Изв. РАН. Сер. физ. 2021. Т. 85. № 10. С. 1436; Dashkov I.D., Fedorov N.A., Grozdanov D.N. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 10. P. 1113.
  4. http://escholarship.org/uc/item/9vn757hp.
  5. Kanshin I.A., Mamedov N.V., Solodovnikov A.A. et al. / Vacuum. 2022. V. 202. Art. No. 111194.
  6. Sy A., Ji Q. // AIP Conf. Proc. 2011. V. 1336. P. 533.
  7. Мамедов Н.В., Прохорович Д.Е., Юрков Д.И. и др. // ПТЭ. 2018. Т. 61. № 4. С. 62; Mamedov N.V., Prokhorovich D.E., Yurkov D.I. et al. // Instrum. Exp. Tech. 2018. V. 61. No. 4. P. 530.
  8. Mamedov N.V., Prokhorovich D.E., Kanshin I.A. et al. // AIP Conf. Proc. 2018. V. 2011. Art. No. 080006.
  9. Coupland J.R., Green T.S., Hammond D.P., Riviere A.C. // Rev. Sci. Instrum. 1973. V. 44. P. 1258.
  10. Беграмбеков Л.Б., Довганюк С.С., Евсин А.У. и др. // Изв. РАН. Сер. физ. 2018. Т. 82. № 2. С. 134; Begrambekov L.B., Dovganyuk S.S., Evsin A.U. et al. // Bull. Russ. Acad. Sci. Phys. 2018. V. 82. No. 2. P. 117.
  11. Rashchikov V.I. // Phys. Procedia. 2015. No. 74. P. 97.
  12. Dolgov A.N., Markov V.G., Kanshin I.A. et al. // J. Phys. Conf. Ser. 2016. V. 666. Art. No. 012023.
  13. Каншин А.А., Солодовников A.А. // ПТЭ. 2020. Т. 63. № 3. С. 62; Kanshin A.A., Solodovnikov A.A. // Instrum. Exp. Tech. 2020. V. 63. No. 3. P. 315.
  14. Белых С.Ф., Евтухов Р.Н., Луткова Л.В. и др. // ЖТФ. 1992. Т. 62. № 6. С. 179; Belykh S.F., Evtukhov R.N., Lutkova L.V. et al.// Tech. Phys. 1992. V. 62. No 6. P. 179.
  15. Kanshin I.A. // Proc. EFRE2020. (Tomsk, 2020). P. 474.
  16. Rokhmanenkov A.S., Kuratov S.E. // J. Phys. Conf. Ser. 2019. V. 1250. Art. No. 012036.
  17. Mamedov N.V., Rokhmanenkov A.S., Solodovnikov A.A. // J. Phys. Conf. Ser. 2021. V. 2064. Art. No. 012039.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Simplified three-dimensional model of the IOS with a target: 1 – focusing electrode; 2 – accelerating electrode; 3 – target.

Жүктеу (57KB)
3. Fig. 2. Three-dimensional model of AI with IOS and target: 1 – AI; 2 – focusing electrode; 3 – accelerating electrode; 4 – target.

Жүктеу (50KB)
4. Fig. 3. Dependence of the number of argon ions in the discharge chamber on time.

Жүктеу (88KB)
5. Fig. 4. Distribution of particles in the discharge chamber of the ion source.

Жүктеу (154KB)
6. Fig. 5. Photographic image of the IOS: 1 – output aperture of the ion source; 2 – aperture of the accelerating electrode. (a) – before the experiment with the illumination on; (b)–(d) – during the experiment with the illumination off and accelerating voltage: (b) 0 kV; (c) –10 kV; (d) –25 kV.

Жүктеу (73KB)
7. Fig. 6. Image of the target: sprayed surface (a); metallographic image (b).

Жүктеу (194KB)
8. Fig. 7. Scheme of target erosion.

Жүктеу (166KB)
9. Fig. 8. Experimental distribution of current density on the target surface.

Жүктеу (93KB)
10. Fig. 9. Modeling of beam motion in the IOS based on experimentally measured emittance: 1 – output aperture of the focusing electrode; 2 – accelerating electrode. (a) – potential distribution; (b)–(d) – ion trajectories at accelerating voltage: (b) Uуск = 0 kV; (c) Uуск = –10 kV; (d) Uуск = –25 kV.

Жүктеу (104KB)
11. Fig. 10. Modeling of beam motion in the IOS based on the particle-in-cell method data: 1 – output aperture of the focusing electrode; 2 – accelerating electrode. (a) – potential distribution; (b)–(d) – ion trajectories at accelerating voltage: (b) Uуск = 0 kV; (c) Uуск = –10 kV; (d) Uуск = –25 kV.

Жүктеу (132KB)
12. Fig. 11. 2D distribution of current density on the target. Uacc = –25 kV.

Жүктеу (57KB)
13. Fig. 12. Current density distribution on the target surface for emittance simulation.

Жүктеу (165KB)
14. Fig. 13. 2D distribution of current density on the target over time. Uacc = –25 kV, Ustor = +2 kV.

Жүктеу (102KB)
15. Fig. 14. Current distribution on the target for different source operating times.

Жүктеу (132KB)
16. Fig. 15. Graph of the current distribution envelope on the target.

Жүктеу (130KB)

© Russian Academy of Sciences, 2024