Elastic properties of a magnetic elastomer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Magnetoactive (aka magnetorheological) elastomer is a composite material consisting of an elastic matrix and magnetic filling substance. A study dedicated to the relationship between its viscoelastic parameters and the strength of the external magnetic field has been done. Under the influence of a field, the material can demonstrate elasticity and viscosity increased by ten folds. The elastic properties of the composite remaining under those conditions heavily depend on the degree of deformation of the sample. Thus, this type of magnetic composite is a prospective material for being used as the working body in controllable dampers.

Full Text

Restricted Access

About the authors

G. V. Stepanov

State Research Institute for Chemistry and Technology of Organoelement Compounds

Author for correspondence.
Email: gstepanov@mail.ru
Russian Federation, Moscow, 105118

P. A. Storozhenko

State Research Institute for Chemistry and Technology of Organoelement Compounds

Email: gstepanov@mail.ru
Russian Federation, Moscow, 105118

References

  1. Liao G.J., Gong X.L., Xuan S.H. // J. Intell. Mater. Syst. Struct. 2012. V. 23. No. 1. P. 25.
  2. Liao G.J., Gong1 X.L., Kang C.J. et al. // Smart Mater. Struct. 2011. V. 20. Art. No. 075015.
  3. Hu G., Guo M., Li W. et al. // Smart Mater. Struct. 2011. V. 20. No.12. P. 1.
  4. Sun S.S., Chen Y., Yang J. // Smart Mater. Struct. 2014. V.23. No. 7. Art. No. 075009.
  5. Li W.H., Zhang X.Z., Du H. Advances in elastomers I: blends and interpenetrating networks. Berlin: Springer, 2013. P. 357.
  6. Ahamed R., Choi Seung-Bok, Ferdaus M.M. // J. Intell. Mater. Syst. Struct. 2018. V. 29. No. 10. P. 2051.
  7. Sun S., Deng H., Yang J. et al. // J. Intell. Mater. Syst. Struct. 2015. V. 26. No. 14. P. 1757.
  8. Kavlicoglu B., Wallis B., Sahin H., Liu Y. // Act. Pass. Smart Struct. Integr. Syst. 2011. V. 79. P. 770.
  9. Kim H.K., Kim H.S., Kim Y.-K. // Smart Mater. Struct. 2016. V. 26. No. 1. Art. No. 015016.
  10. Samir B., Kumbhara S.P., Chavana S.S., Gawad E.B. // Mech. Syst. Signal Process. 2018. V. 100. P. 208.
  11. https://ro.uow.edu.au/eispapers1/619.
  12. Du G., Huang X., Li Y. et al. // Smart Mater. Struct. 2017. V. 26. Art. No. 095024.
  13. Kim Y.-K., Koo J.-H., Kim K.-S., Kim S. // IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Beijing, 2011). P. 1.
  14. Fu J., Zheng X., Yu M. et al. // IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Wollongong, 2013). P. 1.
  15. Xu Z., Yang J., Gu Y. et al. // J. Guid. Control Dyn. 2016. V. 39. No. 3. P. 677.
  16. Yu G.-J., Wen X.-X., Du C.-B., Guo F. // Adv. Mater. Sci. Eng. 2019. P. 1.
  17. Boczkowska A., Awietjan S.F. // Mater. Sci. Forum. 2010. V. 636–637. Art. No. 766.
  18. Rigbi Z., Jilken L. // J. Magn. Magn. Mater. 1983. V. 37. P. 267.
  19. Shiga T., Okada A., Kurauchi T. // J. Appl. Polym. Sci. 1995. V. 58. P. 787.
  20. Stewart W.M., Ginder J.M., Elie L.D. Method and apparatus for reducing brake shudder. US. Patent 5816587, 1998.
  21. Jolly M.R., Carlson J.D., Munoz B.C. // J. Intell. Mater. Syst. Struct. 1996. No. 7. P. 613.
  22. Jolly M.R., Carlson J.D., Munoz B.C. // Smart Mater. Struct. 1996. V. 5. P. 607.
  23. Demchuk S.A., Kuz’min V.A. // J. Eng. Phys. Thermophys. 2002. V. 75. No. 2. P. 396.
  24. Bellan C., Bossis G. // Int. J. Mod. Phys. B. 2002. V. 16. No. 17–18. P. 2447.
  25. Zhou G.Y. // Smart Mater. Struct. 2003. V. 12. P. 139.
  26. Jolly M.R., Carlson J.D., Munoz B.C., Bullions T.A. // J. Intell. Mater. Syst. Struct. 1996. V. 7. P. 613.
  27. Zhou G.Y. // Smart Mater. Struct. 2004. V. 13. P. 1203.
  28. Coquelle E., Bossis G. // Adv. Science. 2005. V. 17. No. 1–2. P. 132.
  29. Gong X.L., Zhang X.Z., Zhang P.Q. // Polym. Test. 2005. V. 24. P. 669.
  30. Lerner A.A., Cunefare K.A. // J. Intell. Mater. Syst. Struct. 2008. V. 19. No. 5. P. 551.
  31. Böse H. // Int. J. Mod. Phys. B. 2007. V. 21. No. 28–29. P. 4790.
  32. Schrittesser B., Major Z., Filipcsei G. // J. Phys. Conf. Ser. 2009. V. 149. Art. No. 012096.
  33. Kchit N., Lancon P., Bossis G. // J. Physics D. 2009. V. 42. Art. No. 105505.
  34. Picken An H., Mendes S.J. // Soft Matter. 2010. V. 6. P. 4497.
  35. Hoang N., Zhang N., Du H. // Smart Mater. Struct. 2010. V. 20. Art. No. 015012.
  36. Yu M., Zhu M., Fu J., Yang P.A., Qi S. // Smart Mater. Struct. 2015. V. 24. No. 11. Art. No. 115021.
  37. Schubert G., Harrison P. // Polym. Test. 2015. V. 42. P. 122.
  38. Khairi M.H.A., Fatah A.Y.A., Mazlan S.A. // Int. J. Mol. Sci. 2019. V. 20. No. 17. Art. No. 4085.
  39. Sebald G., Nakano M., Lallart M. et al. // Sci. Technol. Adv. Mater. 2017. V. 18. No. 1. P. 766.
  40. Winger J., Schümann M., Kupka A., Odenbach S. // J. Magn. Magn. Mater. 2019. V. 481. P. 176.
  41. Stepanov G.V., Borin D. Yu., Raikher Yu.L. et al. // J. Phys. Cond. Matt. 2008. V. 20. Art. No. 204121.
  42. Chertovich A.V., Stepanov G.V., Kramarenko E. Yu., Khokhlov A.R. // Macromol. Mater. Eng. 2010. V. 295. P. 336.
  43. Stepanov G.V., Borin D.Yu., Odenbach S. // J. Phys. Conf. Ser. 2009. V. 149. No. 1. Art. No. 012098.
  44. Stoll A., Mayer M., Monkman G.J., Shamonin M. // J. Appl. Polym. Sci. 2014. V. 131. No. 2. Art. No. 39793.
  45. Böse H., Röder R. // J. Phys. Conf. Ser. 2009. V. 149. Art. No. 012090.
  46. Molchanov V.S., Stepanov G.V., Vasiliev V.G. et al. // Macromol. Mater. Eng. 2014. V. 299. No. 9. P. 1116.
  47. Abramchuk S.S., Grishin D.A., Kramarenko E. Yu., Stepanov G.V. // Polym. Sci. Ser. A. 2006. V. 48. P. 138.
  48. Stepanov G.V., Abramchuk S.S., Grishin D.A. et al. // Polymer. 2007. V. 48. P. 488.
  49. Sorokin V.V., Stepanov G.V., Shamonin M. et al. // Polymer. 2015. V. 76. P. 191.
  50. Sorokin V.V., Stepanov G.V., Shamonin M. et al. // Smart Mater. Struct. 2017. V. 26. Art. No. 035019.
  51. Sorokin V.V., Ecker E., Stepanov G.V. et al. // Soft Matter. 2014. V. 10. P. 8765.
  52. Stepanov G.V., Borin D.Yu., Kramarenko E.Yu. et al. // Polymer Sci. Ser. A. 2014. V. 56. No. 5. P. 603.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Photograph of carbonyl iron (a) and permalloy (b).

Download (331KB)
3. Fig. 2. Schematic diagram of the installation for measuring stress from deformation based on the tensile testing machine type I1158M-1-01-1, where: 1 – stepper motor; 2 – screw movement mechanism; 3 – movement sensor; 4 – load cell; 5 – sample holder; 6 – electromagnetic coil; 7 – measured sample; 8–11 – computer control system for the measurement process.

Download (170KB)
4. Fig. 3. Dependence of stress in the sample on deformation: full hysteresis curve (a), enlarged part, quarter of the hysteresis curve (b), where: 1 – without magnetic field; 2–4 – in a magnetic field of 110 mT and different deformation rates: 2–5 mm/min; 3–20 mm/min, 4–50 mm/min. The arrows indicate the direction of deformation.

Download (284KB)
5. Fig. 4. Dependence of Young's modulus of elasticity in a magnetic field on the magnitude of deformation at different deformation rates. Arrows show the direction of deformation change. Here: 1 – the magnetic field is 0; 2 – tension in a field of 110 mT at a rate of 5 mm/min; 3 – beginning of compression at a rate of 5 mm/min; 4–20 mm/min; 5–50 mm/min.

Download (153KB)
6. Fig. 5. Dependence of stress in the sample on deformation for samples with permalloy filler with different concentrations: 1 – FeNi(70%) field 0 mT; 2 – FeNi(70%) field 110 mT; 3 – Fe(82%) field 110 mT; FeNi(82%) field 110 mT.

Download (125KB)
7. Fig. 6. Dependence of the shear modulus on the magnitude of deformation at different magnetic fields.

Download (157KB)
8. Fig. 7. Dependence of the shear modulus on the magnetic field at different strain values. Strain: 1 – 10%; 2 – 1%; 3 – 0.1%; 4 – 0.01%. A significant dependence of the shear modulus is observed with an increase in the magnetic field to 600 mT in the region of small strains.

Download (237KB)

Copyright (c) 2024 Russian Academy of Sciences