Measuring adhesion energy between MEMS structures using an adhered cantilever
- 作者: Uvarov I.V.1, Morozov O.V.1, Postnikov A.V.1, Svetovoy V.B.2
-
隶属关系:
- Centre for Scientific and Information Technologies of the Valiev Department of Physics and Technology Research of the Kurchatov Institute
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
- 期: 卷 54, 编号 2 (2025)
- 页面: 116-127
- 栏目: ДИАГНОСТИКА
- URL: https://ta-journal.ru/0544-1269/article/view/687112
- DOI: https://doi.org/10.31857/S0544126925020023
- EDN: https://elibrary.ru/FVHDLC
- ID: 687112
如何引用文章
详细
Spontaneous stiction of MEMS elements during fabrication or operation is a serious problem. Capillary or electrostatic forces causing stiction can be eliminated, but dispersion forces are always present due to their fundamental nature and should be investigated in detail. In this paper, dispersion forces are studied experimentally for Si-Au and Si-Ru systems using a test structure – an adhered cantilever. Long (12 mm) and thin (10 μm) cantilevers allow measurements with high accuracy. The paper discusses in detail the fabrication procedure of the cantilevers and the measuring chip. Information on the adhesion energy is extracted from the cantilever shape, which is registered by a scanning interferometer. The roughness of the contacting surfaces is carefully studied and the equilibrium average distance between the surfaces during contact is obtained. The work is of interest not only for MEMS, but also allows one to gain fundamental knowledge about dispersion forces at small distances, which is inaccessible for other experimental methods.
全文:

作者简介
I. Uvarov
Centre for Scientific and Information Technologies of the Valiev Department of Physics and Technology Research of the Kurchatov Institute
编辑信件的主要联系方式.
Email: i.v.uvarov@bk.ru
俄罗斯联邦, Yaroslavl
O. Morozov
Centre for Scientific and Information Technologies of the Valiev Department of Physics and Technology Research of the Kurchatov Institute
Email: i.v.uvarov@bk.ru
俄罗斯联邦, Yaroslavl
A. Postnikov
Centre for Scientific and Information Technologies of the Valiev Department of Physics and Technology Research of the Kurchatov Institute
Email: i.v.uvarov@bk.ru
俄罗斯联邦, Yaroslavl
V. Svetovoy
Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
Email: i.v.uvarov@bk.ru
俄罗斯联邦, Moscow
参考
- Maboudian R., Howe R.T. Critical review: Adhesion in surface micromechanical structures // J. Vacuum Sci. Technol. B. 1997. V. 15. P. 1–20. https://doi.org/10.1116/1.589247
- Mastrangelo C., Hsu C. A simple experimental technique for the measurement of the work of adhesion of microstructures // Technical Digest IEEE Solid-State Sensor and Actuator Workshop. 1992. P. 208–212. https://doi.org/10.1109/SOLSEN.1992.228291
- Legtenberg R., Tilmans H.A., Elders J., Elwenspoek M. Stiction of surface micromachined structures after rinsing and drying: model and investigation of adhesion mechanisms // Sens. Actuators A. 1994. V. 43. P. 230–238. https://doi.org/10.1016/0924-4247(93)00654-M
- Tas N., Sonnenberg T., Jansen H., Legtenberg R., Elwenspoek M. Stiction in surface micromachining // J. Micromech. Microeng. 1996. V. 6. 385. https://doi.org/10.1088/0960-1317/6/4/005
- London F. Zur theorie und systematik der molekularkräfte // Zeitschrift für Physik. 1963. V. 63. P. 245–279. https://doi.org/10.1007/BF01421741
- Boinovich L.B. Long-range surface forces and their role in the progress of nanotechnology // Russian Chemical Reviews. 2007. V. 76(5). P. 471–488. https://doi.org/10.1070/RC2007v076n05ABEH003692
- Derjaguin B.V., Churaev N.V., Muller V.M. Surface forces. Springer. New York, 2013, ISBN: 1475766416.
- Churaev N.V. Surface forces in wetting films // Adv. Colloid Interface Sci. 2003. V. 103. P. 197–218. https://doi.org/10.1016/S0001-8686(02)00074-X
- Lifshitz E.M. Theory of molecular attractive forces between solids // JETP. 1956. V. 2. P. 73–83.
- Dzyaloshinskii I.E., Lifshitz E.M., Pitaevskii L.P. General theory of van der Waals’ forces // Soviet Physics Uspekhi. 1961. Vol. 4. P. 153–176. https://doi.org/10.1070/PU1961v004n02ABEH003330
- Lifshitz E.M., Pitaevskii L.P. Statistical Physics, Part 2, Pergamon Press. Oxford, ISBN: 0750626364.
- Casimir H.B.G. On the attraction between two perfectly conducting plates // Proc. Kon. Ned. Akad. Wet. 1948. V. 51. P. 793–795.
- Klimchitskaya G.L., Mohideen U., Mostepanenko V.M. The Casimir force between real materials: Experiment and theory // Rev. Mod. Phys. 2009. V. 81. 1827. https://doi.org/10.1103/RevModPhys.81.1827
- Rodriguez A.W., Capasso F., Johnson S.G. The Casimir effect in microstructured geometries // Nat. Photonics. 2011. V. 3. P. 211. https://doi.org/10.1038/nphoton.2011.39
- Palasantzas G., Sedighi M., Svetovoy V.B. Applications of Casimir forces: Nanoscale actuation and adhesion // Appl. Phys. Lett. 2020. V. 117. 120501. https://doi.org/10.1063/5.0023150
- Harris B.W., Chen F., Mohideen U. Precision measurement of the Casimir force using gold surfaces // Phys. Rev. A. 2000. V. 62. 052109. https://doi.org/10.1103/PhysRevA.62.052109
- Chan H.B., Aksyuk V.A., Kleiman R.N., Bishop D.J., Capasso F. Quantum mechanical actuation of microelectromechanical systems by the Casimir force // Science. 2001. V. 291. P. 1941–1944. https://doi.org/10.1126/science.1057984
- van Zwol P.J., Palasantzas G., De Hosson J.T.M. Influence of random roughness on the Casimir force at small separations // Phys. Rev. B. 2008. V. 77. 075412. https://doi.org/10.1103/PhysRevB.77.075412
- Sedighi M., Svetovoy V.B., Palasantzas G. Casimir force measurements from silicon carbide surfaces // Phys. Rev. B. 2016. V. 93. 085434. https://doi.org/10.1103/PhysRevB.93.085434
- Mastrangelo C.H., Hsu C.H. Mechanical stability and adhesion of microstructures under capillary forces. I. Basic theory // J. Microelectromech. Syst. 1993. V. 2. P. 33–43. https://doi.org/10.1109/84.232593
- Mastrangelo C.H., Hsu C.H. Mechanical stability and adhesion of microstructures under capillary forces. II. Experiments // J. Microelectromech. Syst. 1993. V. 2. P. 44–55. https://doi.org/10.1109/84.232594
- de Boer M.P., Michalske T.A. Accurate method for determining adhesion of cantilever beams // J. Appl. Phys. 1999. V. 86. P. 817–827. https://doi.org/10.1063/1.370809
- Knapp J.A., de Boer M.P. Mechanics of microcantilever beams subject to combined electrostatic and adhesive forces // J. Microelectromech. Syst. 2002. V. 11. P. 754–764. https://doi.org/10.1109/JMEMS.2002.805047
- DelRio F.W., Dunn M.L., Phinney L.M., Bourdon C.J., de Boer M.P. Rough surface adhesion in the presence of capillary condensation // Appl. Phys. Lett. 2007. V. 90. 163104. https://doi.org/10.1063/1.2723658
- van Zwol P.J., Palasantzas G., De Hosson J.T.M. Influence of random roughness on the adhesion between metal surfaces due to capillary condensation // Appl. Phys. Lett. 2007. V. 91. 101905. https://doi.org/10.1063/1.2768919
- DelRio F.W., de Boer M.P., Knapp J.A., Reedy E.D., Clews P.J., Dunn M.L. The role of van der Waals forces in adhesion of micromachined surfaces // Nat. Mater. 2005. V. 4. P. 629–634. https://doi.org/10.1038/nmat1431
- Svetovoy V., Postnikov A., Uvarov I., Stepanov F., Palasantzas G. Measuring the dispersion forces near the van der Waals–Casimir transition // Phys. Rev. Appl. 2020. V. 13. 064057. https://doi.org/10.1103/PhysRevApplied.13.064057
- Morozov O.V. Dynamics of deposition and removal of a fluorocarbon film in the cyclic process of plasma-chemical etching of silicon // Bulletin of the Russian Academy of Sciences: Physics. 2024. V. 88. P. 447–453. https://doi.org/10.1134/S1062873823706050
- Morozov O.V., Amirov I.I. Aspect-ratio-independent anisotropic silicon etching in a plasma chemical cyclic process // Russ. Microelectron. 2007. V. 36. P. 333–341. https://doi.org/10.1134/S1063739707050071
- Soldatenkov I.A., Stepanov F.I., Svetovoy V.B. Dispersion forces and equilibrium distance between deposited rough films in contact // Phys. Rev. B. 2022. V. 105. 075401. https://doi.org/10.1103/PhysRevB.105.075401
- van Zwol P.J., Svetovoy V.B., Palasantzas G. Distance upon contact: Determination from roughness profile // Phys. Rev. B. 2009. V. 80. 235401. https://doi.org/10.1103/PhysRevB.80.235401
- Muravyeva T.I., Uvarov I.V., Naumov V.V., Palasantzas G., Svetovoy V.B. Excessive number of high asperities for sputtered rough films // Phys. Rev. B. 2021. V. 104. 035415. https://doi.org/10.1103/PhysRevB.104.035415
- Postnikov A.V., Uvarov I.V., Svetovoy V.B. Experimental setup for measuring the dispersion forces by the adhered cantilever method // Rev. Sci. Instrum. 2023. V. 94. 043907. https://doi.org/10.1063/5.0147016
- Hopcroft M.A., Nix W.D., Kenny T.W. What is the Young’s modulus of silicon? // J. Microelectromech. Syst. 2010. V. 19. P. 229–238. https://doi.org/10.1109/JMEMS.2009.2039697
- Soldatenkov I.A., Svetovoy V.B. Adhesion energy for a nonideal cantilever and its relation to the Casimir-Lifshitz forces // Physics. 2024. V. 6. 1204. https://doi.org/10.3390/physics6040074
- Derjaguin B. Untersuchungen über die Reibung und Adhäsion, IV // Kolloid-Zeitschrift. 1934. V. 69. P. 155–164. https://doi.org/10.1007/BF01433225
补充文件
